Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/128828
DC FieldValueLanguage
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorVessio, Gennaroen_US
dc.date.accessioned2024-02-06T20:13:14Z-
dc.date.available2024-02-06T20:13:14Z-
dc.date.issued2024en_US
dc.identifier.issn0941-0643en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128828-
dc.description.abstractSignature verification is a critical task in many applications, including forensic science, legal judgments, and financial markets. However, current signature verification systems are often difficult to explain, which can limit their acceptance in these applications. In this paper, we propose a novel explainable offline automatic signature verifier (ASV) to support forensic handwriting examiners. Our ASV is based on a universal background model (UBM) constructed from offline signature images. It allows us to assign a questioned signature to the UBM and to a reference set of known signatures using simple distance measures. This makes it possible to explain the verifier’s decision in a way that is understandable to non-experts. We evaluated our ASV on publicly available databases and found that it achieves competitive performance with state-of-the-art ASVs, even when challenging 1 versus 1 comparisons are considered. Our results demonstrate that it is possible to develop an explainable ASV that is also competitive in terms of performance. We believe that our ASV has the potential to improve the acceptance of signature verification in critical applications such as forensic science and legal judgments.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications [ISSN 0941-0643], v. 36, nº 5. p. 2411-2427, (Febrero 2024)en_US
dc.subject331117 Equipos de verificaciónen_US
dc.subject330405 Sistemas de reconocimiento de caracteresen_US
dc.subject.otherBiometricsen_US
dc.subject.otherExplainabilityen_US
dc.subject.otherForensicen_US
dc.subject.otherHandwritingen_US
dc.subject.otherSignature Verificationen_US
dc.subject.otherSynthesisen_US
dc.subject.otherTransparencyen_US
dc.subject.otherUniversal Background Modelen_US
dc.titleExplainable offline automatic signature verifier to support forensic handwriting examinersen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-023-09192-7en_US
dc.identifier.scopus85177204517-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcid0000-0002-2924-1225-
dc.contributor.orcid0000-0002-0883-2691-
dc.contributor.authorscopusid58552611900-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid56407135000-
dc.identifier.eissn1433-3058-
dc.description.lastpage2427en_US
dc.description.firstpage2411en_US
dc.relation.volume36en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.date.coverdateFebrero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,256
dc.description.jcr6,0
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Artículos
Adobe PDF (878,68 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.