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Abstract
Signature verification is a critical task in many applications, including forensic science, legal judgments, and financial

markets. However, current signature verification systems are often difficult to explain, which can limit their acceptance in

these applications. In this paper, we propose a novel explainable offline automatic signature verifier (ASV) to support

forensic handwriting examiners. Our ASV is based on a universal background model (UBM) constructed from offline

signature images. It allows us to assign a questioned signature to the UBM and to a reference set of known signatures using

simple distance measures. This makes it possible to explain the verifier’s decision in a way that is understandable to non-

experts. We evaluated our ASV on publicly available databases and found that it achieves competitive performance with

state-of-the-art ASVs, even when challenging 1 versus 1 comparisons are considered. Our results demonstrate that it is

possible to develop an explainable ASV that is also competitive in terms of performance. We believe that our ASV has the

potential to improve the acceptance of signature verification in critical applications such as forensic science and legal

judgments.

Keywords Handwriting � Signature verification � Explainability � Transparency � Forensic � Biometrics � Universal
background model � Synthesis

Abbreviations
ASV Automatic signature verification

FHEs Forensic handwriting examiners

UBM Universal background model

LRq Likelihood ratio

P(U) Probability of membership in the UBM

P(R) Probability of membership in the reference set

DL Deep learning

FCN Fully convolutional network

DET Detection error trade-off

FAR False acceptance rate

FRR False rejection rate

RF Random forgery

SF Skilled forgery

EER Equal error rate

1 Introduction

Forensic Handwriting Examiners (FHEs) are tasked with

comparing a questioned signature to one or more genuine

specimens. This practice is based on the assumption that it

is highly unlikely for two different writers to produce

identical handwriting. However, all writers exhibit inherent

variability in their writing or signature. Despite FHEs

relying on established best practices and accumulating

experience over time, their traditional examination

methodology often faces criticism. This criticism stems

from concerns about the reproducibility and validity of

their visually-based assessments, which inherently possess

subjective elements. In other words, two experts can arrive

at different conclusions. Therefore, there is a pressing need
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for an objective and quantifiable methodology in the field

of forensic signature analysis, one that seeks to establish

new standards and introduce scientific rigor into the

process.

The pattern recognition and computer vision community

have developed several automatic signature verifiers

(ASVs). As a result, outstanding performances have been

achieved on several benchmark datasets. In particular,

exceptional results have been possible thanks to sophisti-

cated and effective deep learning models that comprise

hundreds of layers and millions of parameters [16, 19].

Nevertheless, performance is not the only attribute for

signature verification systems. In addition to the seven

features identified by Jain for biometric systems [33] and

other pertinent aspects like security, fairness, and pri-

vacy [34], explainability has emerged as a crucial factor

for the practical implementation of these systems [5]. The

lack of explanation in the functioning of these systems

prevents their use in some practical contexts, such as

finance, healthcare, government, commercial transactions,

and security. An easy-to-explain and straightforward

computer system with principles close to the practice of

forensic examination is preferable for a jury [44].

The trade-off between the explainability and security of

ASV systems presents a multifaceted consideration. While

transparent and interpretable features and classifiers

enhance comprehensibility, they also introduce potential

vulnerabilities that adversaries could exploit in forging

signatures, as emphasized by [28]. Striking the right bal-

ance necessitates meticulous evaluation, possibly entailing

the amalgamation of transparent features for typical sce-

narios and the incorporation of additional, less transparent

security layers for safeguarding sensitive applications. The

imperative for regular updates and continuous research

cannot be overstated in mitigating evolving threats. Ulti-

mately, the decision regarding the trade-off among

explainability, security, and performance hinges upon the

specific use case and the risk tolerance of the deploying

organization.

Greater transparency should be considered to justify the

use of an ASV system in a courtroom: The automatic

extraction of parameters from a signature should be

directly linked to its physical shape. So a matching tech-

nique that is easy to interpret and explain in an objective

and understandable way is needed. Moreover, there is a

requirement for a measure to weigh the evidence of a

conclusion drawn with simple, transparent, meaningful,

and understandable scores. In summary, there is a practical

use for a signature system capable of being explained in a

human-to-human interaction [52]. Such a system would

provide the forensic expert not only with a powerful tool to

make the findings less questionable, but also a way to add

absolute transparency in communicating the value of

evidence, which would also ensure reproducibility and

convince authorities to use biometric technology to explain

the decision-making processes.

To this end, we propose an offline ASV inspired by the

new technological paradigm of explainable artificial intel-

ligence [52], which shows desirable features for FHEs. The

characteristics of our system and its analysis are detailed

below:

• It is designed in a modular way to improve its

explicability [52]. Thus, at each step in the pipeline

(i.e., for each module), the proposed techniques can be

easily changed according to their accuracy and/or

transparency.

• The ASV uses explainable features, which have a

physical meaning close to the structure of the signature.

Furthermore, our experiments consider exploring the

performance with non-explicable deep learning, DL,

features for performance comparison purposes.

• Understandable matching distances are studied to match

signatures. We select the most straightforward ones to

make the meaning clear across all available distances.

• Forensic analysis requires a transparent model of the

‘‘world.’’ In our case, we use a universal background

model (UBM) constructed with a third-party set of

signatures. Synthetic signatures are also studied in the

UBM to improve the privacy of the system.

• The system is also quite robust in supporting 1 versus 1

signature comparisons, representing the worst working

scenario for an FHE.

• The results are provided in terms of evidence, i.e.,

likelihood ratio, LR, and probability of belonging to the

UBM and to the reference population, which are criteria

familiar to forensic experts.

The results validate the use of explainable and DL features

in several situations. Also, we assess the use of a real

versus synthetic UBM. We selected several publicly

available offline signature databases for these purposes,

whose acquisition process is also transparent. As for the

synthetic UBM, the generation of synthetic signatures is

based on motor control procedures, thus assuring its

transparency. This also increases the data privacy property

of the proposed explainable system. Finally, it is worth

noting that while we are witnessing a paradigm shift in

which signatures are increasingly acquired through online

acquisition systems such as digitizing tablets and smart-

phones, FHEs are still required to verify signatures

acquired primarily in offline mode. For this reason, we

focus here on the latter case.

2412 Neural Computing and Applications (2024) 36:2411–2427

123



1.1 Subsequent work and main contribution

In the initial version of this work [18], an offline automatic

signature verifier was proposed for forensic applications

and validated on two public databases. We also analyzed

individual handcrafted features to assess their impact on

the verifier’s performance.

However, subsequent reviews and publications have

emphasized the need for quality assurance and the relia-

bility of systems in legal contexts [2, 14, 39], highlighting a

general lack of forensic handwriting examiners [14].

Taking these factors into consideration, we believe that

developing explainable systems that can provide objective

and reliable decisions in signature verification would be a

valuable contribution to forensic handwriting analysis.

To this end, we have extended our previous work and

proposed an explainable offline automatic signature verifier

for forensic applications based on the verifier presented at

the conference. Our experimentation now includes more

databases and a more comprehensive comparative analysis

between explainable and non-explainable signature verifi-

cation systems. Our detailed analysis leads us to present

this system as an explainable ASV.

The rest of this paper is organized as follows. First, we

review related work in Sect. 2. Then, Sect. 3 introduces the

proposed automatic system for forensics, which is set up in

Sect. 4. Experimental evaluation and results are reported in

Sect. 5, while the article is concluded in Sect. 6.

2 Related work

The demand for interpretable systems has primarily been

tackled within the field of biometrics to elucidate the out-

comes of deep neural network-based pattern recognition.

One notable illustration is Grad-CAM, a widely recognized

post-processing explanation technique [62], which func-

tions as a visual aid. Its use has been demonstrated for ear

recognition systems [3] as it can identify the most dis-

tinctive patterns in images, thus helping to provide textual

explanations and even detecting the most discriminating

neurons in the network. Similar instances of inter-

pretable techniques are evident in iris recognition [10],

fingerprint segmentation [36], and face recognition [73],

all of which leverage the physical attributes of the

subject [60].

All of these biometric recognizers are based on DL

technology, which has improved explainability with visu-

alization patterns. In offline signature verification, the rise

of DL has also achieved impressive results on different

benchmark datasets, e.g. [25, 26, 74]. For instance, Grad-

CAM can identify regions of interest within an image of a

signature that the model deems important to its decision,

thereby assisting forensic experts in comprehending which

parts of a signature played a crucial role in determining its

authenticity. Nevertheless, our objective is not to elucidate

why a neural network-based model classified a signature as

genuine or forged, but rather to create a system that is

inherently easy to explain. Although Grad-CAM can offer

insights into the model’s decision-making process, neural

networks are still perceived as complex models, and con-

veying their understanding and explanation to a court

necessitates a background unfamiliar to most forensic

examiners. Furthermore, to effectively utilize neural net-

works and, by extension, Grad-CAM, access to a sub-

stantial amount of labeled data is essential, which is not

always the case in a typical work scenario where only a few

signatures are accessible. To the best of our knowledge, a

fully explainable biometric system in the context of offline

ASV, up to the development of our system, has not been

available.

Traditionally, to examine signatures, FHEs use various

illumination and magnification tools, such as stereo-mi-

croscopes, light panels, specialized grids printed on trans-

parent films, and so on. The comparison results are then

typically provided on a five or nine-point scale, based on

some hypotheses about the genuineness of the questioned

signature [68].

The literature is sparse on systems specifically oriented

to supporting forensic investigations. Some automated

tools have been developed in recent years to support the

daily activity of FHEs, such as FLASH ID, iFOX, and

D-Scribe [16]. However, FHEs have traditionally made

very limited use of such systems. Additionally, some tools

have some drawbacks that affect the possibility of their use

in real-world forensic cases. For example, in a courtroom, a

careful understanding and explanation of the decision

process are crucial [69]. Ultimately, none of these systems

is so widespread today that its usefulness can be fully

established.

As an illustration, the use of signatures is prevalent in

bank checks [23]. The verification of authorship can be

open to interpretation by an FHE and may often require

justification in a court of law. The solution presented in this

article offers evidence of the authorship of signatures

through the use of likelihood ratios as metrics. Further-

more, the transparency of our offline ASV system opens

the door to the acceptance of the system by judges and

other professionals with limited technological knowledge.

To partially overcome this problem, and to provide

empirical evidence on the reliability of decisions made by

computer systems, competitions were organized by bio-

metric researchers, in collaboration with forensic examin-

ers, to evaluate the performance of automated tools in

forensic cases. Popular competitions include the
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4NsigComp, SigComp, SigWiComp series [7, 41, 42,

48, 49], in which sub-corpora closest to the real forensic

cases were used, and organizers presented the results in

terms of LR. The ultimate objective in these competitions

was performance. These competitions did not relate to the

explainability of the ASVs nor was the use considered of

one signature as a reference.

To try to bridge the gap between biometrics and

forensics, M. I. Malik’s thesis [47] proposed new signature

verification systems based on local features and on the

assumption that local information contains essential clues

for clear explanation rather than taking an holistic

approach. Similarly, Marcelli et al. [50] proposed a method

to link the features FHEs are most familiar with and

measurements on the digital image of a signature on a

paper document. The method was intended to provide a

quantitative estimate of the variability of features when

examined in different contexts. More recently, Okawa [55]

has proposed an approach to mimic the cognitive processes

that FHEs use to reach their decision, based on a ‘‘bag-of-

visual words’’ and a vector of locally aggregated descrip-

tors. The main idea is to focus on the salient local regions

of the signatures in order to conduct the comparisons.

Inspired by these works, we also use local features to

represent the signatures.

By contrasting them with relevant published work on

offline automatic signature verification systems, Table 1

provides several techniques and algorithms. It is important

to note that the explainability of various systems varies.

However, it is outside the purview of this study to cate-

gorize these systems in terms of their explainability.

Instead, we concentrated on developing a method that

could be useful to forensic handwriting experts.

In this paper, we propose a different approach. In

addition to comparing a questioned signature with a ref-

erence set, we compare such a signature with a UBM

developed with external signatures. This approach is sim-

ilar to a police procedure, in which the police have their

own UBM to compare the cases they receive. The use of a

UBM is not new in signature verification. We identify a

few previous works that used a trained UBM in online

signature verifiers. For example, a Gaussian Mixture Model

was introduced with features of all signatures in a UBM

in [51, 75]. Instead, an Ergodic-HMM was preferred to

train a UBM in [4]. The signature system used the trained

UBM to support the final decision in these cases. However,

these trained UBMs fail in their explicability since they are

too graphically opaque for human users to understand [28].

Our explainable ASV is designed with several modules

of features and classifiers. These modules can be cus-

tomized to meet the specific needs of different applications,

as some applications require a higher level of explainability

than others. Additionally, our work explicitly considers the

security and forensic requirements of ASV, such as the

need for robustness to attacks and the need to generate

explainable predictions. Finally, our ASV has been evalu-

ated on large and diverse signature databases, demon-

strating its effectiveness.

3 Explainable ASV architecture

The architecture of our system aims to verify a questioned

offline signature automatically and is composed of several

modules, as illustrated in Fig. 1. Each module is a step in a

pipeline that can be implemented with different techniques

to analyze their impact on the final performance. Addi-

tionally, each module can be easily replaced depending on

the desired level of explainability in an end application or

for a user.

Our system requires a reference set composed of

enrolled signatures to the ASV, i.e., real reference

Table 1 Offline automatic signature verification techniques for forensic handwriting examination

Algorithm/technique Description References

Graphology analysis Examines psychological aspects of handwriting to assess authenticity [56]

Machine learning Utilizes supervised learning models for signature verification based on training data [23]

Local features Identify keypoints or interest points in signatures for robust feature matching. [47]

Stroke sequence analysis Studies the order and sequence of strokes in a signature [50]

Local binary patterns Encodes texture information for signature representation and comparison [53]

Handwriting feature analysis Analyzes individual handwriting features like slant, size, and pressure [68]

Graph-based approaches Represent signatures as graphs and analyze structural information for authentication [45]

Forensic document analysis Investigates paper, ink, and other physical aspects of the document [55, 69]

Signature comparison Compares questioned signatures to known reference signatures [17]

Biometric authentication Uses biometric data like pen pressure and speed for verification [19]

Neural networks Employs deep learning models for complex signature analysis [43, 74]
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signatures of individuals. Additionally, a transparent UBM,

which ought to be understood by itself [40], is used as

input. The UBM is a gathering of representative sample

from the population. Toward an explainable system, we

propose to use a pool of signatures where the features are

extracted and compared directly with the questioned and

reference set. It is worth highlighting that the UBM is

challenging to build, as it should represent all signature

populations except for the reference set. A practical solu-

tion is to build up this set with signatures signed by other

people. To this end, we used publicly offline signatures

databases. Ideally, this UBM should be independent of the

written script.

The output of the system numerically estimates whether

the questioned signature is genuine or not through the

probabilities of belonging to the reference set and the

UBM, and the LR. Rather than a simple numerical score,

the LR estimates from the evidence whether a questioned

specimen is closer to the reference signatures or to the

UBM [11]. Furthermore, the design of the verifier uses an

explainable framework with features and matching mech-

anisms that are more understandable to human beings. In

summary, the hypothesis behind this system is that a gen-

uine signature must be closer to the reference set than the

UBM set; and a fake specimen must be farther from the

reference set than the UBM.

Formally speaking, given an image-based signature in

the form of a grayscale matrix, X, our system initially

converts it into a specific feature vector of m elements,

x ¼ ½x1; x2; . . .; xm�. Thus, our system proceeds with spec-

imens interpreted as features. Accordingly, feature extrac-

tion is directly carried out with all signatures in the UBM,

the reference signatures, and the questioned one. To

achieve interpretability, the features used should be easily

understood by a human being and related to physical or

geometrical characteristics of the signatures. To this aim,

explainable handcrafted features are used for pursuing

model explainability. For the sake of transparency, we

select some of the well-known explainable features such as

geometrical relations, curvature properties and slants.

Let r 2 R be a reference specimen and R the reference

set. Also, let U be the total number of signatures included

in the UBM and u a single signature of the UBM. Finally,

we define q as a questioned signature to be verified auto-

matically. Next, the explainable ASV calculates an LR and

two types of probabilities.

3.1 Likelihood ratio

We compute the likelihood ratio, LRq, for the questioned

signature. It evidences how many times q is closer to the

reference signatures than to the UBM. To compute LRq, we

calculate two distances. A first distance, d1ðqÞ, represents
the alternative hypothesis, H1. This distance quantifies how

close a signature is to other signers, u 2 U. Mathemati-

cally, it is denoted as follows:

d1ðqÞ ¼ min
8u2U

d ðq; uÞ ð1Þ

where dð�Þ denotes a generic distance matching between

the questioned signature and a signature belonging to the

UBM, u 2 U.

We express the null hypothesis, H0, by measuring the

distance between the questioned signature and the available

reference signatures, r 2 R, belonging to the claimed

signer. The following relation is performed to compute

d2ðqÞ:
d2ðqÞ ¼ min

8r2R
d ðq; rÞ ð2Þ

Finally, the evidence is computed in terms of LR(q) as:

LRq ¼ �2 log
d2ðqÞ
d1ðqÞ

� �
ð3Þ

which means how many times the questioned signature is

closer to the reference signatures than to any other signa-

ture. New scores in terms of probabilities are worked out to

improve the interpretability of such a ratio.

3.2 Probabilities

In addition to LRq, the system calculates two probabilities,

[P(U), P(R)], which can provide more transparency to the

Fig. 1 Block diagram illustrating our explainable offline ASV system.

The inputs consist of the reference set containing known signatures, a

transparent Universal Background Model (UBM) constructed using a

third-party set of signatures, and questioned signatures that have

never been encountered by the ASV. The outputs are presented in

terms of evidence, specifically the likelihood ratio (LRq), as well as

the probabilities of membership in the UBM and the reference set

([P(U), P(R)])
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verification. P(U) denotes the probability of belonging to

the UBM. Alternatively, P(R) gives the probability of

belonging to the reference set. While the first probability

can always be computed, the second requires more than

one signature in the reference set in order to be estimated.

It is, therefore, expected that the more reference signatures

are available, the better the estimation of P(R). As such,

our offline ASV cannot compute P(R) in the case of 1

versus 1 signature verification.

3.2.1 Probability of belonging to the UBM

The metric P(U) represents the probability that the ques-

tioned LR belongs to the UBM. It can be computed as

follows:

PðUÞ ¼ 1� FLRui
LRq j lLRui

; rLRui

� �
ð4Þ

Here, FLRui
is the normal cumulative distribution function

(CDF) with a mean and standard deviation lLRui
; rLRui

� �
,

evaluated at the questioned LRq. The graphical represen-

tation of P(U) is the area under the normal probability

density function (PDF), fLRui
in the interval ½LRq;þ1�. To

obtain this, we need to compute the LR of each specimen in

the UBM, LRu:

LRui ¼ �2 log
dU;2ðuiÞ
dU;1ðuiÞ

� �
ð5Þ

where the signature i in the UBM is denoted by ui and

ðdU;1; dU;2Þ are two distances that depend on the UBM and

the reference set, respectively. These two distances can be

estimated as follows:

dU;1ðuiÞ ¼ min
8u2U

dunui ðui; uÞ ð6Þ

dU;2ðuiÞ ¼min
8r2R

d ðui; rÞ ð7Þ

dð�Þ being a matching distance of two signatures in the

form of feature vectors.

3.2.2 Probability of belonging to the reference set

This probability, P(R), assesses how probable it is that the

questioned signature may belong to the reference speci-

mens. The following expression can be used to calculate it:

PðRÞ ¼ FLRri
LRq j lLRri

; rLRri

� �
ð8Þ

In this case, P(R) represents the area under the fLRri
curve

where LRq is likely to fall within the interval ½�1; LRq�.
Thus, the LRq is evaluated in the CDF, FLRri

, with a mean

and standard deviation lLRri
; rLRri

� �
. Similarly, we can

determine the LR of each reference signature as follows:

LRri ¼ �2 log
dR;1ðriÞ
dR;2ðriÞ

� �
ð9Þ

where dR;1ðriÞ; dR;2ðriÞ
� �

are two distances that depend on

references and UBM specimens:

dR;1ðriÞ ¼min
8r2R

drnri ðri; rÞ ð10Þ

dR;2ðriÞ ¼ min
8u2U

d ðri; uÞ ð11Þ

The above procedure aims to describe a transparent system

which is generic, not only on the feature space but also on

distance matching. A visual easy-to-understand example of

outputs generated by our system can be viewed in Fig. 2.

4 Setting up the proposed system

This section details the explainable features and under-

standable matching distances used in the modules of the

ASV. We also identify the databases used and the experi-

mental protocol for evaluation.

4.1 Databases

We used two different databases to develop the UBM. We

also used three other databases for the experiments to avoid

bias in the results. This strategy contributes significantly to

the ASV explainability [5]. All used signatures are also

transparent in terms of the acquisition protocol and

composition.

Two UBMs were developed, one with real signatures

and another with synthetic ones. The computational model

to generate the synthetic signatures was based on well-

known control motor processes, and the procedure is

completely transparent [22]. It provides complete privacy

to the explainability of the UBM because none of the

signatures could be identified. The former was created with

the first n genuine signatures of GPDS960 [72], whereas

the latter with the Synthetic10000 [22]. The motivation is

to study our system in these two situations, the actual use

of which would depend on the real application. The

experiments were conducted with offline specimens avail-

able in the MCYT-75 [57], BiosecurID [24], Thai [12],

and CEDAR [37] databases. Please note that all these

databases are publicly available and allow experiments

using two scripts.
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4.2 Features

We used four types of handcrafted features in our proposal

as explainable features. DL-based features were also con-

sidered to quantify the performance for each feature.

Explainable features could be accepted in a court if they

were close to the physical features made by ink deposition

on paper, as non-expert humans may then understand how

they were obtained. Moreover, the value of the parameters

is related to the physical phenomenon of ink deposition of

the signature. On the other hand, DL features can perform

better [28]. The features utilized in this paper can be shared

upon request.

As for explainable features, the first type is based on

several geometrical descriptions of the shape of the sig-

nature. We work out these measures in Cartesian and polar

coordinates based on their contours [20]. All geometrical

features were concatenated into a vector, resulting in a

dimension of 445. The second type consisted in dividing

the signatures recursively into a quadtree at two levels.

Then we computed the gradient on each level to explain the

texture properties of the signatures [63]. The dimension

was 200. The third type was based on counting the run-

lengths of the binary images. The feature vector dimension

was 400, and it explains the width of the strokes in the four

main directions: vertical, horizontal, diagonal 45o, and

diagonal 135o [9]. The last feature type consisted in

determining the physical textural properties of offline sig-

natures [21]. Specifically, we elaborated the local binary

patterns and local derivative patterns of the images. The

dimension of these vectors is 765 and 255, respectively.

Moreover, we applied the discrete cosine transform to these

vectors, obtaining dimensions of 168 and 167, respectively.

As a result, four feature vectors associated with textural

features were obtained. These features are summarized in

Table 2.

There are two main advantages in using these features.

The first is that they have been successfully applied to

offline ASVs in previous work and some forensic-based

signature competitions such as 4Nsig-Comp2010 [7] and

SigWIcomp2015 [49]. The second is that the LBP, LDP,

and gradient features, organized in quadtree structures,

quantify how the ink was deposited on the paper from

different points of view. Run-length and geometrical fea-

tures work on binary images. Therefore, they mainly reflect

aspects related to the shape of the signature from different

perspectives. Furthermore, as the extraction process is

entirely different in each case, we take advantage of the

complementarity of their information content.

As for the DL features, three deep neural networks were

involved. The first two models consisted of popular con-

volutional neural networks, namely VGG19 [66] and

ResNet_v2 [31], with weights pre-trained on ImageNet. To

perform feature extraction, we followed the common

practice of removing the top-level classifier, adding a

global average pooling on top of the convolutional base,

and performing transfer learning. Additionally, we con-

ducted transfer learning not from ImageNet but from a

knowledge base more similar to our context. To this end,

we also used an ad hoc, fully convolutional network (FCN)

with weights we have pre-trained on the very popular

MNIST dataset of handwritten digits. Having no fully

connected layers, this model can accept inputs of any size,

so it is suitable for processing small MNIST digits and

higher resolution signature images. We applied commonly

suggested ‘‘generic’’ (VGG19-g) pre-processing for all

three models, which consists of scaling the signatures to

224 � 224 pixels and normalizing their values between 0

and 1. In this way, the global average pooling provides 512

Fig. 2 An interpretable visualization of the output results of the

proposed ASV system is presented, showcasing scenarios where

questioned signatures are either a genuine (on the left) or a skilled

forgery (on the right). The normalized probabilities are depicted as

functions of the likelihood ratios. In both figures, the solid red and

blue curves represent the normalized probability density functions of

the UBM and the reference sets, respectively, denoted as fLRui
and

fLRri
. As expected, when the questioned signature is genuine, the

probability of belonging to the UBM (P(U)) is lower, while the

probability of belonging to the reference set (P(R)) is higher
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features from VGG, 2048 for ResNet_v2, further reduced

to 512 with a simple auto-encoder, and a smaller 64-di-

mensional feature vector from the simpler FCN. Also, to

experiment with a more ‘‘specific’’ (VGG19-s) pre-pro-

cessing for signature images (as done for example in [15]),

we resized the images to 155 � 220 pixels (to preserve the

aspect ratio), inverted the pixel values so that the back-

ground pixels have value 0 and finally normalizing these

values between 0 and 1. For simplicity, we have applied

this specific pre-processing only with VGG19.

It is worth noting that our goal was to assess whether the

explainable features are competitive enough, when com-

pared with automatically learned features, without much

loss of performance. For this reason, we used the common

practice of feature extraction with transfer learning without

training much more specialized DL-based signature veri-

fication systems. Indeed, developing such a system was not

the aim of our research. At the end of the experimental

section, a comparison with more advanced methods is

reported.

4.3 Matching distance

Many powerful offline ASVs use machine learning clas-

sifiers. However, we propose to use understandable

matching distances for function-based features as they

offer a more straightforward explanation for our ASV. In

the literature, there exist matching distances for function-

based features of different or equal length, such as the ‘2

norm. In our case, our matching will be based on features

of the same size. We experimented with three distances for

their extensive use in signature verification [16].

We decided to use a simple version of DTW. This

matching distance builds a dissimilarity matrix with the

Euclidean distances between all the members of two fea-

ture sequences to calculate the optimal distance between

the elements of the two feature vectors. Excellent results

have been achieved in offline and online signature verifi-

cation when this distance was used, e.g. [64]. Manhattan

distance or ‘1 norm has also been used because of its good

results in signature verification [61]. Finally, cosine dis-

tance has also been chosen for our experiments since it is

based on the simple Euclidean dot product formula. It has

proven its effectiveness via DL features over others, such

as the Euclidean distance [58].

Motivated by their simplicity and effectiveness in sig-

nature verification, we integrated these methods into the

proposed ASV. In addition, their use would help our aim to

develop an explainable automatic signature verifier for

offline signatures.

4.4 Evaluation

As usual in biometric systems and automatic signature

verification, performance was evaluated through detection

error trade-off (DET) curves. We computed the false

acceptance rate (FAR) and false rejection rate (FRR)

curves for this purpose. First, we used the signatures in the

reference set and the questioned signatures to develop the

FAR curve. To allow a fair comparison, the reference

signatures were the initial signatures enrolled per user.

Subsequently, the remaining genuine signatures were

employed as questioned signatures. Then, two FAR curves

were built for random and skilled forgeries. The random

forgery (RF) set was worked out with a random signature

out of 74 random users, whereas all fake signatures were

used for the skilled forgery (SF) set. To quantify the per-

formance in the verification task, the equal error rate (EER)

was used in all cases.

It is noteworthy that various metrics have been proposed

for the assessment of automatic signature verification sys-

tems. These metrics encompass the FAR, FRR, and Half

Total Error Rate (HTER), as detailed in [6]. Furthermore, a

recent standard ISO Central Secretary [32] promotes the

adoption of the Attack Presentation Classification Error

Rate (APCER) at fixed Bona Fide Presentation Classifi-

cation Error Rate (BPCER) values. In our research, we

have chosen to uphold the universally accepted met-

rics [16, 59] to prevent potential confusion in the long-term

development of the automatic signature verification field. It

is important to note that these same metrics were employed

in the most recent international ASV competition to eval-

uate system performance [70].

To evaluate our system, we used only one signature as a

reference. Our motivation was to set up the system to cope

with a very challenging case in ASV. Hence, it was

expected that the more signatures are used in the reference

Table 2 Feature vectors used in

the explainable ASV
Explainable features Deep learning features

Label Features Dimension Label Features Dimension

g Geometrical 445 d1 VGG19-g. 512

qt Quadtree 200 d2 VGG19-s. 512

rl Run-length 400 d3 ResNet_v2 512

t1-t4 Textural (765, 255, 168, 167) d4 FCN 64
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population, the better the performance. This evaluation

allows us to study our proposed system for forensics in the

context of other computational ASVs.

5 Experimental results

This section demonstrates that the proposed offline ASV is

adequate for performance and explainability. We also

studied the 1 versus 1 verification case to adjust the ASV.

Finally, the best configuration is evaluated by increasing

the number of signatures in the reference set.

5.1 Studying explainable and deep learning
features

Feature extraction is a crucial step in an offline ASV.

Indeed, many researchers have proposed several feature

extractors to improve the performance of the systems [16].

However, in the previous decade, DL strategies seemed to

be the optimal technique for representing patterns in terms

Fig. 3 Detection error trade-off curves for the proposed ASV system, utilizing explainable features derived from both geometric and textural

properties of the signature, as well as deep learning features extracted from VGG19 and ResNet_v2

Table 3 Equal error rates (%)

using three understandable

matching distances in the ASV

Database Matching distance Explainable features Deep learn features

MCYT DTW 8.22 5.05 Random forgeries

‘1 norm 6.29 4.29

Cosine 8.94 4.09

Thai DTW 10.55 5.54

‘1 norm 7.81 4.76

Cosine 8.86 4.77

BiosecurID DTW 13.56 11.81

‘1 norm 8.16 9.85

Cosine 11.59 10.15

CEDAR DTW 5.76 8.35

‘1 norm 5.19 8.01

Cosine 7.17 6.50

MCYT DTW 23.22 25.44 Skilled forgeries

‘1 norm 21.17 23.93

Cosine 21.89 24.47

Thai DTW 21.42 20.08

‘1 norm 20.58 20.25

Cosine 23.83 20.00

BiosecurID DTW 26.66 32.03

‘1 norm 26.03 31.08

Cosine 27.92 31.33

CEDAR DTW 12.35 11.97

‘1 norm 12.12 8.41

Cosine 13.18 11.14
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of performance [29]. In this section, we quantify the per-

formance of our ASV system when explainable or DL

features are used.

We set up the system using DTW as matching distance,

300 real signatures in the UBM, and a single reference

signature. Besides using this setup in our previous

work [18], training with one signature represents the most

challenging case in signature verification [9]. To compute a

global performance, we fused LRs and probabilities as if

they were considered scores in a biometric-based signature

verifier. We then applied a weighted sum for the explain-

able features (see Table 2) as follows: shfused ¼
x1 LRg þ Pg

� �
þ x2 LRqt þ Pqt

� �
þ x3ð LRrl þ PrlÞ þ

x4 LRti þ Ptið Þ where the weights were proportionally

adjusted, thus regarding the performance of each feature as:

Xh ¼ ð0:1; 0:75; 0:05; 0:1Þ. For those who are interested, it

may be helpful to consult the individual performance of

handcrafted features as presented in [18]. The same fusion

strategy was applied to the DL features: sdlfused ¼
x1 LRd1 þ Pd1ð Þ þ x2 LRd2 þ Pd2ð Þ þx3 LRd3 þ Pd3ð Þþ
x4 LRd4 þ Pd4ð Þ, the weights being Xdl ¼ ð0:5; 0:25;
0:15; 0:1Þ.

Figure 3 shows the DET plots when explainable or DL

features are used for each dataset and random, RF, and

skilled forgeries, SF. For the MCYT corpus, a similar

performance was obtained for SF with both features. The

area between DET plots was 1.90. In the case of RF,

slightly better performance was achieved with DL features

with 3.02 of the difference between DET plots. These

results are also consistent with the other two databases. We

obtained 2.48 and 0.94 in DET curves for RF and SF in

Thai, respectively. Similar differences were found in

BiosecurID, with 2.30 and 4.36 for RF and SF. Thus, for

RF and SF, the differences in the CEDAR case were 0.22

and 0.74. In the case of EER, Fig. 3 shows the performance

obtained in each case. In general, using this initial con-

figuration of our system, explainable features offer similar

results as DL ones, especially in SF, which represents the

most challenging signature verification experiment.

5.2 Studying different understandable matching
distances

In this subsection, our goal is to analyze the performance of

our system with DTW, ‘1 norm and cosine, as under-

standable matching distances. Therefore, we kept the other

setting options of our system unchanged, such as the use of

real signatures in the UBM, one signature as a reference,

and the results when the features are fused.

Table 3 summarizes the results we obtained for both

random and skilled forgeries. We can compare the per-

formance in terms of EER when explainable and DL fea-

tures are used with each matching distance. It is observed

that the lower loss of performance with explainable

Fig. 4 Exploring the optimal number of genuine signatures in the UBM across three databases. The experiments encompassed random and

skilled forgeries, employing both explainable and deep learning features in each scenario

Table 4 Equal error rates (%) using real and synthetic genuine sig-

natures in the universal background model using ‘1 norm as matching

distance

Database UBM RF SF

Explainable features MCYT Real 6.29 21.17

Synt. 7.24 23.04

Thai Real 7.81 20.58

Synt. 12.00 24.25

BiosecurID Real 8.16 26.03

Synt. 8.33 25.27

CEDAR Real 5.19 12.12

Synt. 7.00 11.82

Deep learning features MCYT Real 4.29 23.93

Synt. 4.99 22.42

Thai Real 4.76 20.25

Synt. 6.81 22.92

BiosecurID Real 9.85 31.08

Synt. 8.04 23.37

CEDAR Real 8.01 8.41

Synt. 4.58 5.15
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features is obtained with the ‘1 norm. In the column

‘‘Explainable features,’’ we see that this distance outper-

forms the other two. Additionally, we can compare the

performance loss row by row with explainable and DL

features. In terms of explainability, all distances support

the concept of explainability in automatic signature veri-

fication. Among them, ‘1 norm distance can be seen as the

most useful in critical applications and the easiest to

understand since it is based on the sum of the difference of

individual elements in a vector. Here we will continue to

explore the best system configuration with this matching

distance.

5.3 Studying the universal background model

In this subsection, we explored several aspects of the

UBM. Once again, we use one signature as a reference,

feature fusion at score level and the ‘1 norm as under-

standable matching distance.

We collected the performance for both random and

skilled forgeries by gradually increasing the number of

genuine signatures in the UBM from 50 to 300. Figure 4

shows three subplots, one per dataset considered. Each

subplot shows four solid lines for random and skilled for-

gery experiments, with explainable and DL features. Rel-

atively stable performance is observed in all cases for more

than 100 different genuine signatures. Therefore, we can-

not decide on a precise nopt number. In the following

Table 5 Equal error rates (%)

increasing the number of

reference signatures

Database UBM Feature Reference signatures

1 3 5 7 10

MCYT Real Explain. 6.29 4.32 3.86 2.72 1.80 Random forgeries

Deep L. 4.29 2.52 1.73 1.03 0.74

Synt. Explain. 7.24 4.43 3.57 2.88 1.82

Deep L. 4.99 2.67 1.77 1.30 0.90

Thai Real Explain. 7.81 2.92 2.35 2.34 2.00

Deep L. 4.76 1.47 1.00 0.80 0.81

Synt. Explain. 12.00 5.51 4.15 3.77 3.12

Deep L. 6.81 2.08 1.59 1.26 1.41

BiosecurID Real Explain. 8.16 5.28 5.09 4.95 4.58

Deep L. 9.85 6.11 5.58 5.55 4.16

Synt. Explain. 8.33 5.70 5.16 5.58 4.41

Deep L. 8.04 5.07 4.54 4.56 3.31

CEDAR Real Explain. 5.19 3.64 1.99 1.85 1.25

Deep L. 8.01 4.92 4.21 3.64 3.54

Synt. Explain. 7.00 4.38 3.13 2.49 2.39

Deep L. 4.58 1.58 1.31 0.94 1.01

MCYT Real Explain. 21.17 18.24 15.93 13.79 10.85 Skilled forgeries

Deep L. 23.93 16.99 14.86 12.46 9.79

Synt. Explain. 23.04 18.77 16.19 14.95 12.37

Deep L. 22.42 16.28 12.63 10.59 8.72

Thai Real Explain. 20.58 12.42 9.58 9.33 8.50

Deep L. 20.25 10.25 7.75 8.08 7.75

Synt. Explain. 24.25 14.83 12.42 12.17 11.08

Deep L. 22.92 11.50 9.08 8.83 8.50

BiosecurID Real Explain. 26.03 20.28 19.20 18.64 17.62

Deep L. 31.08 22.30 19.96 20.59 18.19

Synt. Explain. 25.27 19.52 18.89 18.38 17.31

Deep L. 23.37 17.94 14.91 15.22 13.33

CEDAR Real Explain. 12.12 7.20 4.70 4.24 3.71

Deep L. 8.41 6.67 5.53 4.77 4.70

Synt. Explain. 11.82 6.59 3.71 3.48 3.18

Deep L. 5.15 2.95 2.27 1.52 1.59
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Table 6 State-of-the-art results in offline ASV

Method Ref. Performance (EER %)

thglobal thuser

RF SF RF SF

Database: GPDS

CNN-BiLSTM [43] FCV* – 10.16 – –

HOG, DRT ? DMML [67] 5 2.15 20.94 – –

SigNet ? SVM [29] 12 – – – 1.69

Curvelet trans. ? OC-SVM [27] 8 – 15.95 – –

Tangent Angle? SVM [8] 12 – 14.82 – –

Poset-oriented grid ? SVM [77] 5 – – – 9.87

Database: CEDAR

CNN-BiLSTM [43] FCV* – 0 – –

on-2-off, SigCNN [35] 5 – 6.41 – 4.50

on-2-off, SigCNN [35] 10 – 5.27 – 3.48

CNN?Con. Loss Layer [71] 5 – 2.50 – –

CNN?Con. Loss Layer [71] 10 – 1.66 – –

Point-to-Set ? CNN [76] 5 – 9.29 – 5.22

Triplet Nets-Graph [46] 10 – 12.27 – 5.91

Archetypal analysis [78] 5 – – – 2.07

SigNet ? SVM [29] 8 – – – 4.77

Poset-oriented grid ? SVM [77] 5 – – – 4.12

Curvelet trans. ? OC-SVM [27] 8 – 7.83 – –

DCNN ? PDSN [38] 5 – 7.40 – 4.37

Waveforms?GP [65] 8 – 8.71 – –

Meta-learning [30] 8 – 10.21 – 7.07

This work: explainable ASV 1 5.19 12.12 – –

This work: explainable ASV 5 1.99 4.70 – –

This work: explainable ASV 10 1.25 3.71 – –

Database: MCYT

On-2-off, SigCNN [35] 5 – 5.82 – 3.42

On-2-off, SigCNN [35] 10 – 4.55 – 2.01

CNN?Con. Loss Layer Tsourounis et al. [71] 5 – 2.61 – –

CNN?Con. Loss Layer Tsourounis et al. [71] 10 – 1.62 – –

HOG, DRT?DMML [67] 5 1.73 13.44 – –

Poset-oriented grid ? SVM [77] 5 – – – 6.02

Archetypal analysis [78] 5 – – – 3.97

SigNet ? SVM [29] 10 – – – 2.87

VLAD ? KAZE [54] 10 – 5.60 –

DCNN ? PDSN [38] 5 – 7.12 – 3.78

Point-to-Set ? CNN [76] 5 – 9.21 – 4.86

Triplet Nets-Graph [46] 10 – 9.16 – 3.91

Waveforms?GP [65] 10 – 7.55 – –

Meta-learning [30] 5 – 15.37 – 12.77

Handcrafted ? DTW [18] 1 6.79 19.71 – –

This work: Explainable ASV 1 6.29 21.17 – –

This work: Explainable ASV 5 3.86 15.93 – –

This work: Explainable ASV 10 1.80 10.85 – –

Database: Thai

SCUT ? CNN [13] 5 0.19 7.10 – –
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experiments, we set nopt ¼ 300, as we did in our previous

work [18]. Additionally, we see that the curves for random

and skilled forgeries are slightly closer together. In these

cases, we also see that DL features do not always guarantee

better performance, especially for skilled forgeries.

It is worth noting that the size of the UBM can be

increased, which may be advantageous for computer vision

applications. However, the objective of our explainable

offline ASV is to serve as an automated tool for FHE who

are accustomed to designing manual UBM. Therefore, a

size of 300 signatures could be deemed large for FHE, but

it would be considered a standard UBM size for computer

vision purposes.

Also, we included fake signatures in the UBM used for

matching the genuine one. As such, the UBM was enlarged

to 2 � nopt offline specimens. In general, we observed that

adding forgeries in the UBM barely improves performance.

In MCYT or Thai with explainable features, the results

were worsened by less than 1. No relevant improvements

were seen in RF with BiosecurID or Thai when DL features

were used. As for the SF, BiosecurID constantly improves,

whereas no effect is observed in Thai, and MCYT is

slightly worsened. As for an easy-to-explain system in a

court, we avoid complicating the UBM by introducing

forgeries. Hence, this analysis suggests using only genuine

signatures in the UBM.

Data privacy helps in the design of a confidentiality

system, which is another goal considered in the explica-

bility of the algorithms [5]. Accordingly, we designed a

UBM with artificial specimens as a further option for our

system. To this end, we randomly chose 300 different

signatures from the first identities in a synthetic offline

database [22]. All experiments were repeated using this

synthetic UBM. To analyze the use of this UBM, we report

the results obtained in Table 4, when a real UBM was used

under the same conditions. Overall, we can observe that the

performance does not change significantly due to the effect

of the real versus synthetic UBM. On the contrary, it

sometimes improves, as in the case of BiosecurID, or is

slightly worse (see results with Thai).

In some applications in biometrics, synthetic signatures

alleviate conflicts with data protection regulations and cope

with insufficient training data. However, even though pri-

vacy is one of the requirements in explainable systems [5],

some applications prefer real signatures in the UBM.

According to this dichotomy, we analyze below the pro-

posed explainable ASV, thus offering results with a real

and a synthetic UBM.

5.4 Effect of using multiple reference signatures

We further compared the performance with explainable

and DL features when different reference signatures were

used. Commonly, the more knowledge a system has, the

less the error will be. For this experiment, we used the best

configurations found: fused features and ‘1 norm. In

addition to the LR and probabilities of belonging to the

UBM, we computed the probability of belonging to the

reference set when more than one signature is used. These

latter probabilities are fused at the score level by using the

same weights already found.

We can see in Table 5 a consistent behavior of the

proposed system since the more reference signatures there

are, the better the performance. This means that we obtain

a better representation of P(R). As expected, the best

results were obtained using DL features. Aside from

Table 6 (continued)

Method Ref. Performance (EER %)

thglobal thuser

RF SF RF SF

LTP ? oBIFs [13] 5 1.09 10.91 – –

ERL [13] 5 3.02 17.80 – –

Textural ? HMM [12] 5 2.01 11.08 – –

This work: Explainable ASV 1 7.81 20.58 – –

This work: Explainable ASV 5 2.35 9.58 – –

Database: BiosecurID

LBP ? SVM ? Attributes [53] 4 1.66 15.55 – –

LBP ? SVM [24] 4 4.81 20.28 – –

Handcrafted ? DTW [18] 1 10.65 25.91 – –

This work: explainable ASV 1 8.16 26.03 – –

This work: explainable ASV 5 5.09 19.20 – –

*FCV Fold cross validation process
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BiosecurID, real signatures in the UBM seem to be a better

option for performance. It should be considered therefore

that interpretability was successful, despite the perfor-

mance loss, since it leads to explainable ASVs. This

experiment allows us to compare our results with the state-

of-the-art.

5.5 Comparative analysis with the state
of the art

The proposed explainable ASV is now compared to pre-

vious work. We aim to determine whether the achieved

performance using our explainable system is adequate for

practical use.

Indeed, one of the most challenging tasks is to evaluate

fairly the state-of-the-art results in offline signature verifi-

cation. Despite recent efforts with the Thai dataset [13], the

main reason is the lack of standard benchmarks or com-

petitions fixing experimental protocols and metrics for

ASV evaluation.

Despite this difficulty, Table 6 tries to overview results

in ASV using several publicly available popular databases.

Other complications to reasonably analyzing prior litera-

ture are using global versus custom thresholds in the sys-

tem or experimenting with random or skilled forgeries.

Moreover, evaluation metrics like accuracy, FAR, and FRR

are commonly used throughout the literature. For sim-

plicity and tradition in the field [16], Table shows some

works that use the EER and have a performance which is

competitive.

More importantly, in this work, the contributions in

Table 6 are based on machine learning (ML) and DL

techniques. According to [1, 28], DL is at the extreme of

unexplainable systems, and some ML techniques could be

considered easier to explain, such as random forests (RFs),

which are not commonly used in ASV because of their

poor performance. Consequently, the use of the challeng-

ing systems by the FHE in a courtroom cannot be guar-

anteed because their results cannot be easily

explained [44].

To this end, using a fully explainable system for auto-

matically verifying signatures would lead to a loss of

performance. This work can quantify such a performance

loss by comparing our results with the state-of-the-art in

Table 6. Our most explainable configuration is based on

explainable features, ‘1 norm as matching distance, real

signatures in the UBM, and using a global threshold for

evaluation. We estimate a weak performance of 2.16 and

2.48 perceptual points for RF and SF, respectively, for the

most challenging system in the Thai database. Neverthe-

less, it is worth pointing out that our system outperformed

the results given in [12]. In the case of BiosecurID, we lost

about 3.62 and 4.73 of performance for RF and SF. This is

compared with [53], which used four signatures as refer-

ences and was the best performing system in Table.

Regarding the work proposed in [67], we quantify a per-

formance loss of our system of 2.13 and 2.49 for RF and

SF, respectively, with the MCYT corpus. In summary, even

if we lose some performance, the advantage of offering

explicable ASVs validates the use of our system in specific

applications, where this characteristic is critical, such as in

forensic applications.

6 Conclusion

In this paper, we proposed a novel explainable offline

signature verifier to support FHEs. We introduced a uni-

versal background model of signatures from third-party

signers to improve the accuracy of our system. To preserve

privacy, we added synthetic signatures to the UBM. We

also considered explainable features and understandable

distance matching.

Our ASV can provide objective evidence of whether a

signature is genuine or not in terms of likelihood ratios and

probabilities of belonging to the UBM and the reference

set. This makes it suitable for use in forensic settings,

where it is important to be able to explain the decisions

made by the ASV.

Our experiments demonstrated that our ASV can

achieve competitive performance in an explainable setting.

We also showed that explainable features and an under-

standable distance matching based on the ‘1 norm can be

used to maintain a state-of-the-art performance level. This

suggests that handcrafted features should still be consid-

ered for ASV applications where system explainability is

crucial. We believe that this research will help to narrow

the gap between the forensic and pattern recognition

communities by providing a novel and explainable offline

signature verifier.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. This research is partially supported

by the Spanish MINECO (PID2019-109099RB-C41 project), the

European Union (FEDER program), and the Italian Ministry of

University and Research through the PON AIM 1852414 project.

Availability of data and materials The full databases are freely

available.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

2424 Neural Computing and Applications (2024) 36:2411–2427

123



Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Consent to participate The authors are grateful to Daniela Mazzolini

and Patrizia Pavan, forensic handwriting examiners enrolled as

technical consultants at Civil and Criminal Courts in Italy, for fruitful

discussions.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Adadi A, Berrada M (2018) Peeking inside the black-box: a

survey on explainable artificial intelligence (XAI). IEEE Access

6:52138–52160

2. Adeyinka OA, Adesesan BA (2021) The reproducibility and

repeatability of modified likelihood ratio for forensics handwrit-

ing examination. Int J Comput Inf Eng 15(5):322–328

3. Alshazly H, Linse C, Barth E et al (2021) Towards explainable

ear recognition systems using deep residual networks. IEEE

Access 9:122254–122273
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