Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128800
Título: Predictive Analytics-Based Methodology Supported by Wireless Monitoring for the Prognosis of Roller-Bearing Failure
Autores/as: Primera, Ernesto
Fernández, Daniel
Cacereño Ibáñez, Andrés 
Rodríguez-Prieto, Alvaro
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Bearing Failure
Data Analytics
Predictive Maintenance
Prognostics
Statistical Modeling
Fecha de publicación: 2024
Publicación seriada: Machines 
Resumen: Roller mills are commonly used in the production of mining derivatives, since one of their purposes is to reduce raw materials to very small sizes and to combine them. This research evaluates the mechanical condition of a mill containing four rollers, focusing on the largest cylindrical roller bearings as the main component that causes equipment failure. The objective of this work is to make a prognosis of when the overall vibrations would reach the maximum level allowed (2.5 IPS pk), thus enabling planned replacements, and achieving the maximum possible useful life in operation, without incurring unscheduled corrective maintenance and unexpected plant shutdown. Wireless sensors were used to capture vibration data and the ARIMA (Auto-Regressive Integrated Moving Average) and Holt–Winters methods were applied to forecast vibration behavior in the short term. Finally, the results demonstrate that the Holt–Winters model outperforms the ARIMA model in precision, allowing a 3-month prognosis without exceeding the established vibration limit.
URI: http://hdl.handle.net/10553/128800
DOI: 10.3390/machines12010069
Fuente: Machines[EISSN 2075-1702],v. 12 (1), (Enero 2024)
Colección:Artículos
Adobe PDF (5,19 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.