Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128800
Campo DC Valoridioma
dc.contributor.authorPrimera, Ernesto-
dc.contributor.authorFernández, Daniel-
dc.contributor.authorCacereño Ibáñez, Andrés-
dc.contributor.authorRodríguez-Prieto, Alvaro-
dc.date.accessioned2024-02-05T16:09:34Z-
dc.date.available2024-02-05T16:09:34Z-
dc.date.issued2024-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/128800-
dc.description.abstractRoller mills are commonly used in the production of mining derivatives, since one of their purposes is to reduce raw materials to very small sizes and to combine them. This research evaluates the mechanical condition of a mill containing four rollers, focusing on the largest cylindrical roller bearings as the main component that causes equipment failure. The objective of this work is to make a prognosis of when the overall vibrations would reach the maximum level allowed (2.5 IPS pk), thus enabling planned replacements, and achieving the maximum possible useful life in operation, without incurring unscheduled corrective maintenance and unexpected plant shutdown. Wireless sensors were used to capture vibration data and the ARIMA (Auto-Regressive Integrated Moving Average) and Holt–Winters methods were applied to forecast vibration behavior in the short term. Finally, the results demonstrate that the Holt–Winters model outperforms the ARIMA model in precision, allowing a 3-month prognosis without exceeding the established vibration limit.-
dc.languageeng-
dc.relation.ispartofMachines-
dc.sourceMachines[EISSN 2075-1702],v. 12 (1), (Enero 2024)-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherBearing Failure-
dc.subject.otherData Analytics-
dc.subject.otherPredictive Maintenance-
dc.subject.otherPrognostics-
dc.subject.otherStatistical Modeling-
dc.titlePredictive Analytics-Based Methodology Supported by Wireless Monitoring for the Prognosis of Roller-Bearing Failure-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3390/machines12010069-
dc.identifier.scopus85183349724-
dc.identifier.isi001151131600001-
dc.contributor.orcid0009-0008-1218-3082-
dc.contributor.orcid0000-0003-4021-7215-
dc.contributor.orcid0000-0002-3947-185X-
dc.contributor.orcid0000-0002-0712-7472-
dc.contributor.authorscopusid57219452322-
dc.contributor.authorscopusid57218302695-
dc.contributor.authorscopusid55027233000-
dc.contributor.authorscopusid57191162443-
dc.identifier.eissn2075-1702-
dc.identifier.issue1-
dc.relation.volume12-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid12967710-
dc.contributor.daisngid51622719-
dc.contributor.daisngid15803283-
dc.contributor.daisngid2919411-
dc.description.numberofpages17-
dc.utils.revision-
dc.contributor.wosstandardWOS:Primera, E-
dc.contributor.wosstandardWOS:Fernández, D-
dc.contributor.wosstandardWOS:Cacereño, A-
dc.contributor.wosstandardWOS:Rodríguez-Prieto, A-
dc.date.coverdateEnero 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-ING-
dc.description.sjr0,474-
dc.description.jcr2,1-
dc.description.sjrqQ2-
dc.description.jcrqQ2-
dc.description.esciESCI-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-3947-185X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCacereño Ibáñez,Andrés-
Colección:Artículos
Adobe PDF (5,19 MB)
Vista resumida

Visitas

78
actualizado el 16-nov-2024

Descargas

31
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.