Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128798
Campo DC Valoridioma
dc.contributor.authorAjali Hernández, Nabil Isaacen_US
dc.contributor.authorRuiz García, Alejandroen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2024-02-05T15:56:07Z-
dc.date.available2024-02-05T15:56:07Z-
dc.date.issued2024en_US
dc.identifier.issn0011-9164en_US
dc.identifier.urihttp://hdl.handle.net/10553/128798-
dc.description.abstractThis study examines the relationship between input conditions and the prediction of boron rejection in full-scale seawater reverse osmosis (SWRO) desalination plants using ensemble-based machine learning. While reverse osmosis is the dominant desalination technology, limited research has focused on analyzing plant performance under actual operating conditions. To address this gap, we developed and implemented machine learning algorithms to forecast boron permeability coefficient values, which are indicative of boron rejection concentrations in the permeate. Our analysis utilizes data from a SWRO desalination plant in southeast Spain, examining various input variables and their influence on the prediction of these parameters. The results demonstrate that our ensemble-based machine learning approach can predict boron permeability coefficient values with a reasonable margin of error of 1 mgL−1, as evidenced by mean average error (MAE) and mean absolute percentage error (MAPE) values of 7.93·10–8 and 11.8 %, respectively. In conclusion, an innovative application of artificial intelligence algorithms in the field of water purification under real operational conditions has been introduced, thus introducing valuable insights into the use of machine learning algorithms for forecasting boron rejection concentrations in full-scale SWRO desalination plants. The findings lay the foundation for future researches exploring automated and deep-learning methods in water purification.en_US
dc.languageengen_US
dc.relation.ispartofDesalinationen_US
dc.sourceDesalination [ISSN 0011-9164], v. 573, 117180, (marzo 2024)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject330806 Regeneración del aguaen_US
dc.subject.otherDesalinationen_US
dc.subject.otherReverse osmosisen_US
dc.subject.otherBoron rejectionen_US
dc.subject.otherNeural networksen_US
dc.subject.otherMachine learningen_US
dc.titleANN based-model for estimating the boron permeability coefficient as boric acid in SWRO desalination plants using ensemble-based machine learningen_US
dc.typeinfo: eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.desal.2023.117180en_US
dc.identifier.scopus2-s2.0-85179060659-
dc.identifier.isiWOS:001128262100001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.relation.volume573en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Energía, Corrosión, Residuos y Agua-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3939-5316-
crisitem.author.orcid0000-0002-5209-653X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAjali Hernández, Nabil Isaac-
crisitem.author.fullNameRuiz García, Alejandro-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (3,39 MB)
Vista resumida

Citas SCOPUSTM   

7
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 10-nov-2024

Visitas

140
actualizado el 01-jun-2024

Descargas

109
actualizado el 01-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.