Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/128254
Title: | Methodological development of personalized orthopedic splints through low-cost additive manufacturing | Authors: | Bordón Pérez, Pablo Rubén Cuadrado Hernández, Alberto Javier Paz Hernández, Rubén Navarro Gonzalo, Álvaro Monzón Verona, Mario Domingo Rivero Lopez,Yamilet Garcia Montagut, Carlos Joshua Yánez Santana, Manuel Alejandro Ruiz Alzola, Juan Bautista |
UNESCO Clasification: | 321310 Cirugía ortopédica 331402 Prótesis 3328 Procesos tecnológicos |
Keywords: | Fabricación digital Inmovilización médica Escaneado tridimensional Extrusión de material Digital manufacturing, et al |
Issue Date: | 2023 | Journal: | Dyna (Spain) | Abstract: | Orthopedic splints are widely used to immobilize parts of the body during the recovery from bone injuries, surgeries, or post-traumatic recovery. In the medical field, there are two main types of splints: the rigid and disposable ones made of plaster, and the non-disposable but detachable ones, typically made up of metallic and polymeric components. Rigid splints are economical and can be quickly applied, but they have limitations in terms of weight, ventilation, and comfort, and also require medical staff intervention for their removal. On the other hand, detachable splints offer greater comfort and breathability, but they are more expensive and their fit to the patient is less accurate. This work presents the development of personalized orthopedic splints, lighter and more breathable, at a reasonable cost and production time. To achieve this, a methodology is proposed that includes an economical scanning of the area to be immobilized, an accessible and efficient digital design, and its production using MEX additive manufacturing technology, meeting the necessary mechanical requirements for immobilization and stiffness, based on finite element simulations. This proposal is presented as an alternative to conventional splints, offering improved performance thanks to affordable and low-cost additive manufacturing technologies. | URI: | http://hdl.handle.net/10553/128254 | ISSN: | 0012-7361 | DOI: | 10.6036/11081 | Source: | Dyna (Spain [ISSN 0023-7361 ; eISSN 1989-1490], v. 0 (2023) |
Appears in Collections: | Artículos |
Page view(s)
106
checked on Oct 12, 2024
Download(s)
50
checked on Oct 12, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.