Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/12825
Título: A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradox
Autores/as: Vallina, Sergio M.
Simó, Rafael
Anderson, T. R.
Gabric, Albert J.
Cropp, R.
Pacheco Castelao, José Miguel 
Clasificación UNESCO: 251007 Oceanografía física
12 Matemáticas
Palabras clave: Atlantic Time-Series
Dimethylsulfoniopropionate Dmsp
Solar-Radiation
Phytoplankton Community
Marine Dimethylsulfide, et al.
Fecha de publicación: 2008
Publicación seriada: Journal Of Geophysical Research-Biogeosciences 
Resumen: A new one-dimensional model of DMSP/DMS dynamics (DMOS) is developed and applied to the Sargasso Sea in order to explain what drives the observed dimethylsulfide (DMS) summer paradox: a summer DMS concentration maximum concurrent with a minimum in the biomass of phytoplankton, the producers of the DMS precursor dimethylsulfoniopropionate (DMSP). Several mechanisms have been postulated to explain this mismatch: a succession in phytoplankton species composition towards higher relative abundances of DMSP producers in summer; inhibition of bacterial DMS consumption by ultraviolet radiation (UVR); and direct DMS production by phytoplankton due to UVR-induced oxidative stress. None of these hypothetical mechanisms, except for the first one, has been tested with a dynamic model. We have coupled a new sulfur cycle model that incorporates the latest knowledge on DMSP/DMS dynamics to a preexisting nitrogen/carbon-based ecological model that explicitly simulates the microbial-loop. This allows the role of bacteria in DMS production and consumption to be represented and quantified. The main improvements of DMOS with respect to previous DMSP/DMS models are the explicit inclusion of: solar-radiation inhibition of bacterial sulfur uptakes; DMS exudation by phytoplankton caused by solar-radiation-induced stress; and uptake of dissolved DMSP by phytoplankton. We have conducted a series of modeling experiments where some of the DMOS sulfur paths are turned “off” or “on,” and the results on chlorophyll-a, bacteria, DMS, and DMSP (particulate and dissolved) concentrations have been compared with climatological data of these same variables. The simulated rate of sulfur cycling processes are also compared with the scarce data available from previous works. All processes seem to play a role in driving DMS seasonality. Among them, however, solar-radiation-induced DMS exudation by phytoplankton stands out as the process without which the model is unable to produce realistic DMS simulations and reproduce the DMS summer paradox.
URI: http://hdl.handle.net/10553/12825
ISSN: 2169-8953
DOI: 10.1029/2007JG000415
Fuente: Geophysical research letters, American Geophysical Union [ISSN 2169-8953], v. 113 G1), G01009, (Marzo 2008)
Derechos: by-nc-nd
Colección:Artículos
miniatura
Adobe PDF (913,92 kB)
Vista completa

Citas SCOPUSTM   

49
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

47
actualizado el 17-nov-2024

Visitas

74
actualizado el 18-mar-2023

Descargas

149
actualizado el 18-mar-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.