Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/12825
DC FieldValueLanguage
dc.contributor.authorVallina, Sergio M.en_US
dc.contributor.authorSimó, Rafaelen_US
dc.contributor.authorAnderson, T. R.en_US
dc.contributor.authorGabric, Albert J.en_US
dc.contributor.authorCropp, R.en_US
dc.contributor.authorPacheco Castelao, José Miguelen_US
dc.date.accessioned2015-02-14T03:31:14Z-
dc.date.accessioned2018-03-15T14:29:02Z-
dc.date.available2015-02-14T03:31:14Z-
dc.date.available2018-03-15T14:29:02Z-
dc.date.issued2008en_US
dc.identifier.issn2169-8953en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/12825-
dc.description.abstractA new one-dimensional model of DMSP/DMS dynamics (DMOS) is developed and applied to the Sargasso Sea in order to explain what drives the observed dimethylsulfide (DMS) summer paradox: a summer DMS concentration maximum concurrent with a minimum in the biomass of phytoplankton, the producers of the DMS precursor dimethylsulfoniopropionate (DMSP). Several mechanisms have been postulated to explain this mismatch: a succession in phytoplankton species composition towards higher relative abundances of DMSP producers in summer; inhibition of bacterial DMS consumption by ultraviolet radiation (UVR); and direct DMS production by phytoplankton due to UVR-induced oxidative stress. None of these hypothetical mechanisms, except for the first one, has been tested with a dynamic model. We have coupled a new sulfur cycle model that incorporates the latest knowledge on DMSP/DMS dynamics to a preexisting nitrogen/carbon-based ecological model that explicitly simulates the microbial-loop. This allows the role of bacteria in DMS production and consumption to be represented and quantified. The main improvements of DMOS with respect to previous DMSP/DMS models are the explicit inclusion of: solar-radiation inhibition of bacterial sulfur uptakes; DMS exudation by phytoplankton caused by solar-radiation-induced stress; and uptake of dissolved DMSP by phytoplankton. We have conducted a series of modeling experiments where some of the DMOS sulfur paths are turned “off” or “on,” and the results on chlorophyll-a, bacteria, DMS, and DMSP (particulate and dissolved) concentrations have been compared with climatological data of these same variables. The simulated rate of sulfur cycling processes are also compared with the scarce data available from previous works. All processes seem to play a role in driving DMS seasonality. Among them, however, solar-radiation-induced DMS exudation by phytoplankton stands out as the process without which the model is unable to produce realistic DMS simulations and reproduce the DMS summer paradox.en_US
dc.formatapplication/pdf-
dc.languageengen_US
dc.relation.ispartofJournal Of Geophysical Research-Biogeosciencesen_US
dc.rightsby-nc-nd-
dc.sourceGeophysical research letters, American Geophysical Union [ISSN 2169-8953], v. 113 G1), G01009, (Marzo 2008)en_US
dc.subject251007 Oceanografía físicaen_US
dc.subject12 Matemáticasen_US
dc.subject.otherAtlantic Time-Seriesen_US
dc.subject.otherDimethylsulfoniopropionate Dmspen_US
dc.subject.otherSolar-Radiationen_US
dc.subject.otherPhytoplankton Communityen_US
dc.subject.otherMarine Dimethylsulfideen_US
dc.subject.otherBiological Removalen_US
dc.subject.otherAtmospheric Sulfuren_US
dc.subject.otherEcosystem-Modelen_US
dc.subject.otherRapid Turnoveren_US
dc.subject.otherGas-Exchangeen_US
dc.titleA dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradoxen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1029/2007JG000415en_US
dc.identifier.scopus2-s2.0-50549103512-
dc.identifier.scopus50549103512-
dc.identifier.isi000253066200001-
dc.contributor.authorscopusid13606163100-
dc.contributor.authorscopusid7102111067-
dc.contributor.authorscopusid7403303191-
dc.contributor.authorscopusid7003279098-
dc.contributor.authorscopusid55739684700-
dc.contributor.authorscopusid24741104100-
dc.identifier.absysnet551260-
dc.identifier.issue1-
dc.relation.volume113en_US
dc.investigacionCienciasen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.type2Artículoen_US
dc.contributor.daisngid2005009-
dc.contributor.daisngid372036-
dc.contributor.daisngid197507-
dc.contributor.daisngid593086-
dc.contributor.daisngid180511-
dc.contributor.daisngid5549935-
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Vallina, SM-
dc.contributor.wosstandardWOS:Simo, R-
dc.contributor.wosstandardWOS:Anderson, TR-
dc.contributor.wosstandardWOS:Gabric, A-
dc.contributor.wosstandardWOS:Cropp, R-
dc.contributor.wosstandardWOS:Pacheco, JM-
dc.date.coverdateFebrero 2008en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.orcid0000-0003-4027-8608-
crisitem.author.fullNamePacheco Castelao, José Miguel-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (913,92 kB)
Show simple item record

SCOPUSTM   
Citations

47
checked on Jun 26, 2022

WEB OF SCIENCETM
Citations

45
checked on Jun 26, 2022

Page view(s)

63
checked on May 21, 2022

Download(s)

87
checked on May 21, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.