Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127899
DC FieldValueLanguage
dc.contributor.authorSenent-Aparicio, Javieren_US
dc.contributor.authorJimeno-Sáez, Patriciaen_US
dc.contributor.authorMartínez-España, Raquelen_US
dc.contributor.authorPérez Sánchez, Julioen_US
dc.date.accessioned2023-12-11T20:27:58Z-
dc.date.available2023-12-11T20:27:58Z-
dc.date.issued2023en_US
dc.identifier.issn0920-4741en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127899-
dc.description.abstractStreamflow prediction in ungauged basins (PUB) is necessary for effective water resource management, flood assessment, and hydraulic engineering design. Spain is one of the countries in Europe expected to suffer the most from the consequences of climate change, notably an increase in flooding. The authors selected the Miño River basin in the northwest of Spain, which covers an area of 2,168 km2, to develop a novel approach for predicting streamflow in ungauged basins. This study presents a regionalisation of the soil and water assessment tool (SWAT), a semi-distributed, physically based hydrological model. The regionalisation approach transfers SWAT model parameters based on hydrological similarities between gauged and ungauged subbasins. The authors used k-means and expectation−maximisation (EM) machine learning clustering techniques to group 30 subbasins (9 gauged subbasins) into homogeneous, physical, similarity-based clusters. Furthermore, the regionalisation featured physiographic attributes (basin area, elevation, and channel length and slope) and climatic information (precipitation and temperature) for each subbasin. For each homogeneous group, the SWAT model was calibrated and validated for the gauged basins (donor basins), and the calibrated parameters were transferred to the pseudo-ungauged basins (receptor basins) for streamflow prediction. The results of the streamflow prediction in the pseudo-ungauged basins demonstrate satisfactory performance in most of the cases, with average NSE, R2, RSR, and RMSE values of 0.78, 0.91, 0.42, and 5.10 m3/s, respectively. The results contribute to water planning and management and flood estimation in the studied region and similar areas.en_US
dc.languageengen_US
dc.relation.ispartofWater Resources Managementen_US
dc.sourceWater Resources Management [ISSN 0920-4741], (Noviembre 2023)en_US
dc.subject330515 Ingeniería hidráulicaen_US
dc.subject.otherClusteringen_US
dc.subject.otherHydrological modelen_US
dc.subject.otherRegionalisationen_US
dc.subject.otherStreamflow predictionen_US
dc.subject.otherSwaten_US
dc.subject.otherUngauged basinsen_US
dc.titleNovel approaches for regionalising SWAT parameters based on machine learning clustering for estimating streamflow in ungauged basinsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11269-023-03678-8en_US
dc.identifier.scopus85177869783-
dc.contributor.orcid0000-0002-1818-5811-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid56692838000-
dc.contributor.authorscopusid57194269805-
dc.contributor.authorscopusid57194634936-
dc.contributor.authorscopusid56692422200-
dc.identifier.eissn1573-1650-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.date.coverdateNoviembre 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,898
dc.description.jcr4,3
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-2615-6076-
crisitem.author.fullNamePérez Sánchez, Julio-
Appears in Collections:Artículos
Adobe PDF (2,21 MB)
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.