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Abstract
Streamflow prediction in ungauged basins (PUB) is necessary for effective water resource 
management, flood assessment, and hydraulic engineering design. Spain is one of the 
countries in Europe expected to suffer the most from the consequences of climate change, 
notably an increase in flooding. The authors selected the Miño River basin in the northwest 
of Spain, which covers an area of 2,168 km2, to develop a novel approach for predicting 
streamflow in ungauged basins. This study presents a regionalisation of the soil and water 
assessment tool (SWAT), a semi-distributed, physically based hydrological model. The 
regionalisation approach transfers SWAT model parameters based on hydrological simi-
larities between gauged and ungauged subbasins. The authors used k-means and expecta-
tion−maximisation (EM) machine learning clustering techniques to group 30 subbasins (9 
gauged subbasins) into homogeneous, physical, similarity-based clusters. Furthermore, the 
regionalisation featured physiographic attributes (basin area, elevation, and channel length 
and slope) and climatic information (precipitation and temperature) for each subbasin. For 
each homogeneous group, the SWAT model was calibrated and validated for the gauged 
basins (donor basins), and the calibrated parameters were transferred to the pseudo-un-
gauged basins (receptor basins) for streamflow prediction. The results of the streamflow 
prediction in the pseudo-ungauged basins demonstrate satisfactory performance in most 
of the cases, with average NSE, R2, RSR, and RMSE values of 0.78, 0.91, 0.42, and 5.10 
m3/s, respectively. The results contribute to water planning and management and flood 
estimation in the studied region and similar areas.

Keywords Hydrological Model · Streamflow Prediction · Ungauged Basins · 
Regionalisation · Clustering · SWAT

1 3

http://orcid.org/0000-0002-1818-5811
http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-023-03678-8&domain=pdf&date_stamp=2023-11-27


J. Senent-Aparicio et al.

1 Introduction

Streamflow, or runoff, is one of the crucial flows, along with precipitation and evaporation, 
in the hydrological cycle (Trenberth et al. 2007). The amount of runoff has a direct impact 
on human life, as it is the main water resource for the different uses in the basins. Increased 
demand for water due to population growth and improved living standards (Jodar-Abellan 
et al. 2018), along with decreased water resource quality due to the continuous introduction 
of undesirable chemicals (Ali et al. 2009; Basheer 2018a, b), underscores the imperative 
need for accurate streamflow estimation to ensure an adequate quantity of quality water 
is available. Therefore, streamflow estimation is not only essential for understanding the 
different hydrological processes in the basin but also for water resource management, plan-
ning, flood prediction, and hydraulic engineering design (Guo et al. 2021). Rainfall–runoff 
models are standard tools for modelling river basin streamflow, and calibrating their param-
eters is a mandatory task to achieve reliable predictions. The number of monitoring stations 
worldwide is decreasing, generating a lack of hydrometric data − especially in emerging 
economies. This decrease is typically due to the high costs of investment in, as well as the 
operation and maintenance of, traditional hydrometric monitoring systems. In the case of 
ungauged basins, no observed streamflow data is available for model calibration because it 
is either of poor quality, inaccessible, or nonexistent. Therefore, streamflow prediction in 
ungauged basins (PUB) has been and continues to be a significant challenge for the global 
hydrological community (Darko et al. 2021). The International Association of Hydrologi-
cal Sciences (IAHS) initiated a 10-year scientific plan to address the PUB problem in 2003 
(Sivapalan et al. 2003; Hrachowitz et al. 2013) and recently reiterated its importance by 
including it among the major unsolved problems in hydrology (Blöschl et al. 2019). A com-
mon approach to solving this problem is to take of physically-based hydrological models 
and regionalise their parameters using basin characteristics (Yadav et al. 2007; Cheng et al. 
2021).

Regionalisation consists of transposing the model parameters or general hydrological 
information of a gauged basin, termed a donor basin, to a similar ungauged basin, termed a 
receptor basin (Razavi and Coulibaly 2013a). The most commonly used parameter region-
alisation approaches are regression-based and similarity-based (Wu et al. 2022). Similarity-
based regionalisations can be grouped into: those based on spatial proximity (Beza et al. 
2023; Ssegane et al. 2012) and those based on physical similarity (Singh et al. 2009; Mosavi 
et al. 2021). Hydrological regionalisation based on the basin’s physical properties can pro-
vide information on how and to what extent climatic and landscape features control the 
basin’s hydrological characteristics (Gao et al. 2018). This regionalisation concept is based 
on the premise that basins with similar characteristics (e.g. climate, topography, vegeta-
tion, and soils) typically have similar streamflow responses (Smakhtin 2001). The physical 
similarity method involves a cluster analysis of basins to find a donor basin with physical 
characteristics similar to the target basin (Guo et al. 2021). Clustering has been successfully 
applied as a machine learning technique in earth science modelling due to its impressive 
performance in nonlinear relationship processing. Basin clustering can be performed using 
various clustering algorithms, such as k-means (Razavi and Coulibaly 2013b), hierarchical 
agglomerative clustering (Farsadnia et al. 2014), fuzzy clustering (Mosavi et al. 2021), and 
hybrid clustering (Ramachandra Rao and Srinivas 2006).
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Following regionalisation, an accurate hydrological model should be used to simulate 
streamflow in ungauged basins. Basin-scale models are prominent hydrological models 
due to their ability to simulate scenarios and their applicability to developing management 
policies. Notable among them, is the soil and water assessment tool (SWAT) (Arnold et al. 
1998), a semi-distributed, ecohydrological, public domain model. SWAT is the most effi-
cient model for solving various hydrological problems at different scales and in different 
scenarios (Balha et al. 2023). It is well documented in the literature, and has been used for 
streamflow simulation in ungauged basins (Srinivasan et al. 2010; Sisay et al. 2017; Mosavi 
et al. 2021; Singh et al. 2022). The model relies on computational efficiency due to its semi-
distributed and aggregated approach, which also makes it applicable to continental domains. 
Several studies have focused on transferring parameters based on the physical similarity 
approach to predict streamflow records in ungauged basins using SWAT (Sellami et al. 
2014; Swain and Patra 2017; Mosavi et al. 2021; Wu et al. 2022; Gebeyehu et al. 2023). 
However, few studies have used machine learning, particularly clustering, to regionalise 
SWAT model parameters (Mosavi et al. 2021).

Strong evidence indicates that Spain is one of the countries most affected by climate 
change in Europe. An observable rise in the magnitude of rainfall has increased the flooding 
of rivers and wadis, escalating the potential risk to infrastructure and urban areas (Egui-
bar et al. 2021; Senent-Aparicio et al. 2023). Therefore, estimating streamflow records in 
ungauged basins is essential. In this study, we selected the headwaters of the Miño River 
based on the availability and quality of the streamflow data required to perform and validate 
this research.

The main aim of this study is to evaluate streamflow estimates in a set of ungauged basins 
of the Miño River in the northwest of Spain using a hydrological SWAT model with param-
eters obtained using a regionalisation method. The model parameters are transferred from 
gauged basins to target ungauged basins using a physical similarity criteria. The homoge-
neous basins are defined using the most widely used clustering techniques, such as k-means 
and expectation−maximisation (EM). To our knowledge, combining these clustering tech-
niques with the SWAT model presents a novel approach which has never been examined for 
the purpose of modelling ungauged basins. No similar studies on the Miño River region or 
the rest of Spain exist. Therefore, this methodology is a significant step forward for water 
resource management in the area.

2 Study Area and Data

2.1 Study Area

The Miño River is the most important river in the province of Galicia, located in the north-
west corner of Spain. The study area is the headwater of the Miño River Basin (HMRB; 
Fig. 1a) within the Terras do Mino, declared a biosphere reserve in 2002 by UNESCO and 
designated a site of community importance (SCI) by the European Union due to its signifi-
cant ecological value. The HMRB has an area of 2,168 km2 and a mean elevation of 503 m, 
ranging from 363 m in the river valley to 1,028 m in the mountainous areas (Fig. 1b).

The climate is mild and rainy, influenced by the Atlantic Ocean (Di Blasi et al. 2013). 
Furthermore, the mean annual precipitation in the study basin is 1,200 mm, and the aver-
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age annual temperature is 11.4 ºC. Persistent Atlantic fronts from the west produce abun-
dant flows from autumn to spring that gradually decrease until the summer, which is the 
driest season (Jimeno-Sáez et al. 2018). In total, 77% of the basin has a predominantly 
Humic Cambisol soil type, the dominant soil type throughout the region (Fig. 1c), with a 
loam texture (41% sand, 36% silt, and 23% clay). The basin includes a mixture of natu-
ral and agricultural land interspersed with small rural zones (Senent-Aparicio et al. 2019). 
The dominant land use is agriculture (41% of the area), followed by forest-type land cover 
(36%) and brush, grassland, and pasture areas (23%), as shown in Fig. 1d.

Fig. 1 (a) Location of the HMRB in Spain; (b) digital elevation model (DEM), stream gauges, and sub-
basin boundaries of the basin; (c) soil; and (d) land use map of the basin
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2.2 Data

Seven parameters were selected for subbasin clustering based on a literature review (Razavi 
and Coulibaly 2013a; Barbarossa et al. 2017; Swain and Patra 2017; Mosavi et al. 2021) 
and data availability: area, maximum elevation, minimum elevation, channel length, chan-
nel slope, mean annual precipitation, and mean annual temperature. In general, these char-
acteristics are most frequently used by researchers in streamflow regionalisation (Razavi 
and Coulibaly 2013a). Figure 2 illustrates the spatial distribution of these subbasin char-
acteristics. The areas of the subbasins range from 1 to 265 km2. The subbasins with the 
highest elevations are located in the eastern part of the basin (Fig. 2b). The valley zone, 
corresponding to the central part of the basin, contains the subbasins with lower elevations 
(Fig. 2b and c), lower channel slopes (Fig. 2e), lower precipitation (Fig. 2f), and higher 
mean temperatures (Fig. 2g).

The physical parameters of each subbasin were obtained from the information gener-
ated by the SWAT model in QGIS software. The SWAT model required a digital eleva-
tion model (DEM) 25 × 25 m provided by the Spanish National Geographic Institute (IGN: 
https://www.ign.es/web/ign/portal/cbg-area-cartografia; Fig. 1b), a 1 km resolution soil map 
implemented from the Harmonized World Soil Database (Nachtergaele et al. 2008; Fig. 1c), 
and a land use map extracted from Corine Land Cover (2012; Fig. 1d). This data has been 
used for the same area in previous studies (Jimeno-Sáez et al. 2018; Senent-Aparicio et 
al. 2019). The basin comprises 30 subbasins, nine of which are gauged subbasins due to 
the presence of stream gauges at their outlets (Figs. 1b and 2a). Monthly streamflow data 
available for the period 2011−2018 was collected from the Centre for Hydrographic Studies 
of CEDEX website (http://ceh-flumen64.cedex.es/anuarioaforos/default.asp) for all hydro-
logical stations. Daily precipitation and temperature data was downloaded from the SWAT 
website (https://swat.tamu.edu/data/spain/). This climate data from the Spanish National 
Meteorological Service (AEMET), in a ready-to-use format for entry into the hydrologi-
cal SWAT model, is available from 1951 to 2019 with a resolution of 5 km for all of Spain 
(Senent-Aparicio et al. 2021).

3 Methodology

The research objective was to develop a technique for estimating streamflow in the ungauged 
basins using a hydrological regionalisation method. Figure 3 provides a flowchart of the 
steps involved. A detailed description of the workflow is given in Appendix A. The three 
steps of the methodology are described in the following sections.

3.1 Hydrological Modelling

We used the hydrological SWAT model for subbasin delineation, hydrological modelling, 
and streamflow estimation. SWAT is a semi-distributed, physically based hydrological 
model operated in QGIS through the QSWAT extension. SWAT is a globally employed and 
efficient tool for quantifying various hydrological components, such as surface runoff, sedi-
ments, and pollution (Al-Khafaji et al. 2020). The flowchart in Fig. 3 shows that the first 
step of the SWAT model was to delineate the subbasins from the DEM and define the outlets 
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Fig. 3 Methodology flowchart

 

Fig. 2 Spatial distributions of subbasin characteristics in HMRB
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of several subbasins. The model then used the slope, land use, and soil type information to 
define hydrological response units (HRUs). The final step was to enter the meteorological 
data into the model and update its database. We selected the Hargreaves-Samani approach, 
requiring daily maximum and minimum temperature data to estimate potential evapotrans-
piration. The SWAT model was then run, and the streamflow of the subbasins was simulated 
as the model’s output based on a water balance that considers the soil water content, precipi-
tation, surface runoff, evapotranspiration, percolation, and baseflow quantity. Furthermore, 
the SWAT model simulated the various parameters using different mathematical equations 
and empirical formulas (Neitsch et al. 2011; Arnold et al. 2012;).

3.2 Clustering of Homogeneous Basins

Regionalisation by physical similarity involves classifying basins to find at least one donor 
basin with physical characteristics similar to the target basin (Guo et al. 2021). We grouped 
homogeneous basins by testing different clustering techniques, including grouping items 
with similar characteristics that are frequently used, among other applications, to detect 
weather patterns (Aytaç 2020). We created homogeneous groups of basins using two of the 
best-known and most widely used techniques: k-means (Mokdad and Haddad 2017; Aytaç 
2020; Lou et al. 2021) and EM (Di et al. 2019a, b; Asante-Okyere et al. 2020). Both tech-
niques must predefine the number of clusters and are explained in Appendix A.

3.3 Hydrological Model Validation

In this study, we evaluated the SWAT model on a monthly basis following a two-phase 
strategy. In the first phase, we calibrated and validated the model in the donor basin of 
each cluster. The SWAT model simulation did not always produce satisfactory results by 
default, requiring calibration and validation using observed streamflow data (Swain et al. 
2022). In this study, we performed an automatic calibration using SWAT calibration and 
uncertainty procedures (SWAT-CUP) software (Abbaspour 2012). In particular, we used the 
SUFI2 algorithm for calibration to identify the most influential parameters (i.e. sensitivity 
analysis) in the hydrological process and their optimum values. According to Arsenault et 
al. (2015), it is possible to reduce the parameters used in the model, decreasing its complex-
ity with little or no loss in the regionalised model’s performance. The period 2009−2010 
was used for model warm-up, 2011−2015 for calibration, and 2016−2018 for validation. 
Once the model was calibrated and validated for each donor basin, we tested it in a second 
phase for the pseudo-ungauged basins of each cluster, predicting the streamflow for the 
period 2011−2018. The model’s performance was evaluated in the two validation phases; 
we calculated the statistics listed in Table B1 (in Appendix B) by comparing the simulated 
streamflow with the streamflow observed in the stream gauges.
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4 Results and Discussion

4.1 Clustering Homogeneous Subbasins

The parameters to be defined for the two clustering algorithms were the maximum num-
ber of iterations until there were no changes in the techniques and the number of optimal 
clusters (k). The number of iterations established was 10. Although we initially performed 
tests with values of 5, 7, 10, and 12, we determined that after 10 iterations, no variations 
or changes of instances occurred. We estimated the optimal value of k using two methods: 
dendrograms and the elbow method (Jain and Dubes 1988; Liu and Deng 2021; Aksan et al. 
2021). A dendrogram is a plot derived from a hierarchical cluster which represents the data 
in the form of a tree that organises the data into subgroups that are divided until the desired 
level of detail is reached. The plot is created by forming clusters of observations, along with 
their levels of similarity, at each step. The level of similarity is measured on the horizontal 
axis, and the different observations are specified on the vertical axis. Fig. C1 in Appendix C 
gives the dendrogram for the available datasets.

The y-axis shows the instances, and the x-axis displays the clusters. Analysing the x-axis 
allows four levels with two, three, or four clusters to be differentiated. The levels with two 
clusters were the most evident. We confirmed this resultusing the elbow method, the results 
of which are displayed in Fig. C2. As seen in this figure, it was necessary to identify where 
the change of tendency in the curve is to determine the best number of groups. However, the 
options of three and four groups could also be valid solutions since the change in trend is 
gradual rather than abrupt, indicating no major differences between groups.

After we optimised the number of clusters and observed that the best version to use was 
groups of two clusters (although recognising that groups of three and four clusters were also 
valid) we performed the EM and k-means techniques using the Euclidean and Manhattan 
distances for the dataset. After 10 iterations, the solutions obtained were the same 70% of 
the time for any of the methods or distances. Figure 4 illustrates the results and makes it 
possible to identify the variation in clustering. Figure 4a shows the performance of the EM 

Fig. 4 Homogeneous zones obtained using different clustering techniques: (a) two clusters obtained using 
EM, (b) three clusters obtained using Euclidean k-means, and (c) four clusters obtained using Manhattan 
distance k-means. The points denote the location of the stream gauges
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technique, and Fig. 4b and c present the results of the k-means technique using the Euclid-
ean and Manhattan distances, respectively.

The subbasins were classified into different homogeneous regions or clusters, meaning 
that each cluster grouped the subbasins with homogeneous characteristics. The results were 
the same regardless of the technique or distance used in seven of the 10 runs. This finding 
indicates that the groups were sufficiently separated, with the core group (Cluster 1) remain-
ing almost intact when running two, three, or four clusters. Cluster 1 obtained using the EM 
and Cluster 1 obtained using the Euclidean k-means contained the same subbasins. Cluster 
1 obtained using k-means and the Manhattan distance were very similar, but Subbasins 8, 
10, 14, and 16 became part of Cluster 2. This result indicates that the basins’s characteristics 
are similar and that the clustering was satisfactory. Table B2 (see Appendix B) presents the 
mean values of the characteristics for each of the homogeneous regions identified using 
each clustering technique.

Each Cluster 1 includes subbasins with a smaller area, lower elevation, shallower streams, 
lower annual precipitation, and slightly higher mean annual temperatures than the other 
clusters. Cluster 3, obtained using Euclidean k-means, contains the most upstream subbasins 
(i.e. the basins at the highest altitude), in which precipitation is higher and the channels have 
a steeper gradient than in the other subbasins. Cluster 4, obtained using Manhattan distance 
k-means, contains the northwesternmost subbasins with the highest annual precipitation. 
The clustering results demonstrate that each cluster contains at least two gauged subbasins 
(see Table B3 in Appendix B).

4.2 SWAT Validation in the Donor Basins

Once the subbasins were clustered, we selected one subbasin in each cluster to be a donor, 
and the remaining subbasins became receptor basins. In this study, we analysed all possible 
combinations; that is, all of the gauged subbasins were donor basins at some point in time. 
Therefore, nine SWAT models, one for each donor subbasin, were developed, calibrated, 
and validated.

Before calibrating the SWAT model, we performed 500 model runs and selected sensitive 
parameters by performing a sensitivity analysis on 10 widely used parameters (Jimenez-
Navarro et al. 2021; Jimeno-Sáez et al. 2021; Castellanos-Osorio et al. 2023) that can influ-
ence river streamflow (see Table B4 in Appendix B). In particular, we selected the SWAT 
parameters that obtained a p-value of less than 0.05 for each donor basin − the lower the 
p-value, the more sensitive the parameter. Table B4 lists the sensitive parameters selected 
for each subbasin. Each model was also designated using the acronym SB, followed by the 
subbasin number. The sensitive parameters identified were not the same in all nine cases. 
For example, the CN2 parameter, which determines the volume of surface runoff contribut-
ing to the total streamflow and depends on several factors related to the type of soils and 
their uses, was the only sensitive parameter for all donor subbasins. The parameters related 
to groundwater (i.e. GWQMN, GW_DELAY, RCHRG_DP, and GW_REVAP) were sensi-
tive for eight of the nine models. These parameters have frequently been found to be the 
most sensitive in various studies conducted in different areas, as demonstrated by da Silva 
et al. (2018) in Brazil and Guo and Su (2019) on precipitation inputs from multiple sources 
in a Chinese basin. The SOL_AWC parameter was not used because it obtained a p-value 

1 3



J. Senent-Aparicio et al.

higher than 0.05 in all cases. This ranking of parameter sensitivity is supported by Raposo 
et al. (2013), Jimeno-Sáez et al. (2018), and Senent-Aparicio et al. (2019) in this region.

Automatic calibration was subsequently performed through 1,000 simulations to deter-
mine the optimal values of the sensitive parameters using the NSE statistic as the objective 
function. The optimal parameter values for each SWAT model are listed in Table 1. The 
small values of the percolation fraction (RCHRG_DP) reflect the fact that no aquifers in 
the area favour significant and lasting water storage. The ALPHA_BF values were less than 
0.3, indicating soils with a slow response to recharge (Arnold et al. 2012). GW_DELAY, 
which is quantified in days, determines the recharge delay for shallow groundwater systems. 
Increasing this delay factor slows the recharge rate. The default GW_DELAY value of 31 
days was reduced during calibration, indicating a rapid response of runoff to rainfall, as in 
Guse et al. (2014). In all of the subbasins, the ESCO value was high, which is expected for 
the Atlantic climate (Glavan et al. 2011; Ouallali et al. 2020). These optimum values are 
similar to those obtained in other studies performed in the area (Jimeno-Sáez et al. 2018; 
Senent-Aparicio et al. 2019).

Table 2 indicates the performance of the SWAT model during the calibration (2011−2015) 
and validation (2016−2018) periods in the nine donor basins. The SWAT performances indi-
cate that the calibrated models satisfactorily simulated the monthly streamflow in donor 
basins. The R2 statistic obtained values greater than 0.87 in all models. According to the cri-
teria established by Moriasi et al. (2007), all models, except SB4 and SB6, were impressive, 
with NSE values above 0.75 and RSR values below 0.5. The SB4 and SB6 models obtained 
lower but nevertheless perfectly acceptable statistics.

As can be seen in Fig. C3 and Fig. C4 in Appendix C, the models were also validated 
graphically by comparing the simulated results with the observed streamflow. All models 
except SB6 tended to slightly underestimate peak flow events in the calibration and valida-
tion phases. The ineffectiveness of the SWAT model in achieving peak flows has previously 
been noted in multiple studies (Kim et al. 2015; Makwana and Tiwari 2017; Jimeno-Sáez et 
al. 2018; Blanco-Gómez et al. 2019). The hydrographs illustrate that the models calibrated 
in the donor basins simulated the streamflow very well, except for SB4 and SB6, where, 
although acceptable, the estimated streamflow differed significantly from the observed 
streamflow.

Table 1 Optimal values of SWAT parameters in donor basin models
Parameter SB4 SB6 SB8 SB19 SB20 SB23 SB26 SB28 SB30
GWQMN -319.25 948.25 288.25 57.25 295.75 - -400.25 -311.75 -118.25
GW_DELAY 6.44 - 2.29 15.11 10.69 7.66 2.11 21.76 13.83
RCHRG_DP 0.04 - 0.08 0.13 0.18 0.21 0.001 0.18 0.06
ALPHA_BF 0.08 - 0.08 0.23 0.19 - 0.04 - 0.19
GW_REVAP 0.02 0.10 0.10 0.09 0.10 - 0.04 0.03 0.06
REVAPMN -4.75 -192.20 - - - - - -124.25 499.50
CN2 2.02 11.50 -1.54 3.98 -1.00 -3.10 1.00 12.70 -11.58
ESCO 0.99 0.78 1.00 - - 0.69 0.99 0.99 0.93
EPCO - 0.93 - - - 0.76 - - -
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4.3 SWAT Validation in the Pseudo-ungauged Basins

After we calibrated and validated the SWAT models for the donor basins, we ensured that 
the models would operate in the study area and transferred the calibrated parameters to 
estimate streamflow in the pseudo-ungauged basins. The results of the streamflow simula-
tion in the pseudo-ungauged basins for 2011−2018 are summarised in the following figures. 
The monthly hydrographs in Figs. 5 and 6 present the estimated streamflow in each of the 
pseudo-ungauged subbasins estimated using all of the models tested. The bar graphs display 
the errors obtained by comparing them with the observed streamflow.

The results are generally satisfactory. As can be seen, the R2 values obtained in the stream-
flow estimations for all pseudo-ungauged basins are significantly high (i.e. above 0.82), 
indicating a high degree of collinearity between the estimated and observed streamflow and 
a low error variance. Based on the NSE statistic and according to the criteria established by 
Moriasi et al. (2007), all the models used to estimate streamflow in the pseudo-ungauged 
subbasins are excellent (NSE > 0.75) except in seven cases, of which only two experiments 
performed unsatisfactorily.

The RMSE values are low in all of the models, even in SB4, which obtained an RMSE 
value of 30.12 m3/s and a monthly flow ranging between 2.3 and 157 m3/s. For a more 
accurate measure of performance, RSR, which normalises the RMSE using the standard 
deviation of the observations, was also used. According to Moriasi et al.’s (2007) criteria, 
RSR values below 0.5 are excellent. Only six models obtained RSR values higher than 0.5, 
of which only two were unsatisfactory, as was the case with the NSE statistic. Hence, most 
of the models could be classified as excellent when the parameters were transferred to the 
pseudo-ungauged basins.

In all three Cluster 1s (see Table B3), the model calibrated with Donor Subbasin 4 (SB4) 
was classed as unsatisfactory (NSE < 0.5 and RSR > 0.70) when estimating streamflow in 

Donor 
basin 
model

Period R2 NSE RSR RMSE

SB4 Calibration 0.94 0.71 0.54 23.19
Validation 0.93 0.75 0.50 22.41

SB6 Calibration 0.88 0.72 0.53 5.13
Validation 0.87 0.56 0.67 7.03

SB8 Calibration 0.95 0.92 0.28 7.30
Validation 0.94 0.93 0.26 7.07

SB19 Calibration 0.95 0.95 0.23 1.98
Validation 0.95 0.95 0.22 2.15

SB20 Calibration 0.94 0.94 0.25 1.20
Validation 0.96 0.96 0.20 0.97

SB23 Calibration 0.90 0.84 0.40 0.86
Validation 0.88 0.86 0.37 0.94

SB26 Calibration 0.96 0.96 0.20 0.58
Validation 0.97 0.97 0.18 0.53

SB28 Calibration 0.90 0.89 0.34 0.83
Validation 0.92 0.87 0.36 1.05

SB30 Calibration 0.93 0.82 0.42 1.47
Validation 0.92 0.79 0.46 1.88

Table 2 Performance of the 
SWAT model in donor basins 
during the calibration and valida-
tion periods
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Fig. 5 Observed and simulated monthly streamflow and error graphs for pseudo-ungauged basins 4, 6, 8, 
19, and 20 during the entire test period (2011–2018)
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Subbasin 6. In addition, in the Cluster 1 obtained using EM and Euclidean k-means, the 
model of Donor Subbasin 8 (SB8) was also unsatisfactory in estimating streamflow in Sub-
basin 6. The weakest results were related to stream gauges located in Subbasins 4, 6, and 8, 
which are located in the most downstream subbasins. Therefore, the observed data could be 
somewhat anthropised and differ more from the modelled data.

Fig. 6 Observed and simulated monthly streamflow and error graphs for pseudo-ungauged basins 23, 26, 
28, and 30 during the entire test period (2011–2018)
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The results indicate that transferring the parameters calibrated in the donor basins to the 
pseudo-ungauged basins with homogeneous characteristics allowed for a highly accurate 
estimation of streamflow. Therefore, the semi-distributed SWAT model successfully esti-
mated stremflow in the pseudo-ungauged basins, and it can be concluded that the clustering 
method was useful for estimating streamflow in the ungauged basins. Similar results have 
been obtained in other studies, such as those by Sellami et al. (2014), Swain and Patra 
(2017), Choubin et al. (2019), and Mosavi et al. (2021), who also found that the ungauged 
basins exhibited similar hydrological behaviour to the gauged basins within the same clus-
ter and obtained impressive results in streamflow estimation by regionalisation combining 
clustering techniques with the SWAT model.

5 Conclusions

The results demonstrate the efficiency of transferring calibrated parameters to similar basins 
to estimate streamflow. The methodology is flexible and can be adapted to various clustering 
techniques. In addition, future research could explore additional hydrology-related features 
to potentially improve the methodology. The absence of a universal regionalisation method 
is attributed to differences in basin characteristics.

The main limitations of this study are data availability and quality, as well as the avail-
ability and length of observed streamflow data. Using a common measurement period can 
limit the study, and the methodology is only applicable when there is at least one gauged 
basin in the cluster of ungauged basins for data transfer.

Flow estimation in river basins is vital for various practical applications, such as the 
design of hydraulic structures, operation of hydroelectric power plants, water allocation for 
irrigation, industrial, and domestic use, flood and drought prediction, and environmental 
flow estimation. Therefore, the results of this study are significant for water resource man-
agement and planning, not only in the basin studied but also in other regions where a similar 
approach can be applied. This methodology also constitutes a valuable and effective tool for 
risk and environmental managers, as it contributes to decision-making in the management 
of ungauged basins lacking observed hydrological data.
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