Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127844
DC FieldValueLanguage
dc.contributor.authorLópez, Belénen_US
dc.contributor.authorOkrasińska-Płociniczak, Hannaen_US
dc.contributor.authorPłociniczak, Łukaszen_US
dc.contributor.authorRocha, Juanen_US
dc.date.accessioned2023-12-04T17:23:33Z-
dc.date.available2023-12-04T17:23:33Z-
dc.date.issued2024en_US
dc.identifier.issn1007-5704en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127844-
dc.description.abstractThe time-fractional porous medium equation is an important model for many hydrological, physical, and chemical flows. We study its self-similar solutions, which make up the profiles of many important experimentally measured situations. We prove that there is a unique solution to the general initial–boundary-value problem in a one-dimensional setting. When supplemented with boundary conditions from the physical models, the problem exhibits a self-similar solution described with the use of the Erdélyi–Kober fractional operator. Using a backward shooting method, we show that there exists a unique solution to our problem. The shooting method is not only useful for deriving theoretical results. We use it to devise an efficient numerical scheme to solve the governing problem along with two ways to discretize the Erdélyi–Kober fractional derivative. Since the latter is a nonlocal operator, its numerical realization has to include some truncation. We find the correct truncation regime and prove several error estimates. Furthermore, the backward shooting method can be used to solve the main problem, and we provide a convergence proof. The main difficulty lies in the degeneracy of the diffusivity. We overcome it with some regularization. Our findings are supplemented with numerical simulations that verify the theoretical findings.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulationen_US
dc.sourceCommunications in Nonlinear Science and Numerical Simulation [ISSN 1007-5704], v. 128, (Enero 2024)en_US
dc.subject12 Matemáticasen_US
dc.subject120219 Ecuaciones diferenciales ordinariasen_US
dc.subject.otherErdélyi–Kober fractional operatoren_US
dc.subject.otherNumerical methoden_US
dc.subject.otherTime-fractional porous medium equationen_US
dc.titleTime-fractional porous medium equation: Erdélyi–Kober integral equations, compactly supported solutions, and numerical methodsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cnsns.2023.107692en_US
dc.identifier.scopus85177232433-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-0005-4845-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid36623836800-
dc.contributor.authorscopusid55879271900-
dc.contributor.authorscopusid54417820200-
dc.contributor.authorscopusid55938905900-
dc.relation.volume128en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,919
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,9
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-3243-8256-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameRocha Martín, Juan-
Appears in Collections:Artículos
Show simple item record

Page view(s)

47
checked on Mar 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.