Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127844
Título: Time-fractional porous medium equation: Erdélyi–Kober integral equations, compactly supported solutions, and numerical methods
Autores/as: López, Belén 
Okrasińska-Płociniczak, Hanna
Płociniczak, Łukasz
Rocha, Juan 
Clasificación UNESCO: 12 Matemáticas
120219 Ecuaciones diferenciales ordinarias
Palabras clave: Erdélyi–Kober fractional operator
Numerical method
Time-fractional porous medium equation
Fecha de publicación: 2024
Publicación seriada: Communications in Nonlinear Science and Numerical Simulation 
Resumen: The time-fractional porous medium equation is an important model for many hydrological, physical, and chemical flows. We study its self-similar solutions, which make up the profiles of many important experimentally measured situations. We prove that there is a unique solution to the general initial–boundary-value problem in a one-dimensional setting. When supplemented with boundary conditions from the physical models, the problem exhibits a self-similar solution described with the use of the Erdélyi–Kober fractional operator. Using a backward shooting method, we show that there exists a unique solution to our problem. The shooting method is not only useful for deriving theoretical results. We use it to devise an efficient numerical scheme to solve the governing problem along with two ways to discretize the Erdélyi–Kober fractional derivative. Since the latter is a nonlocal operator, its numerical realization has to include some truncation. We find the correct truncation regime and prove several error estimates. Furthermore, the backward shooting method can be used to solve the main problem, and we provide a convergence proof. The main difficulty lies in the degeneracy of the diffusivity. We overcome it with some regularization. Our findings are supplemented with numerical simulations that verify the theoretical findings.
URI: http://hdl.handle.net/10553/127844
ISSN: 1007-5704
DOI: 10.1016/j.cnsns.2023.107692
Fuente: Communications in Nonlinear Science and Numerical Simulation [ISSN 1007-5704], v. 128, (Enero 2024)
Colección:Artículos
Vista completa

Visitas

80
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.