Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127365
Título: Exploring the Potential of Robot-Collected Data for Training Gesture Classification Systems
Autores/as: García Sosa, Alejandro 
Quintana Hernández, José Juan 
Ferrer Ballester, Miguel Ángel 
Carmona Duarte, María Cristina 
Clasificación UNESCO: 33 Ciencias tecnológicas
Fecha de publicación: 2023
Proyectos: Modelo Computacional Del Aprendizajey la Degeneración Del Movimiento Humano Para Su Aplicación en Diagnóstico Clínico 
Conferencia: 21st Conference of the International Graphonomics Society (IGS2023) ItemCrisRefDisplayStrategy.events.deleted.icon
Resumen: Sensors and Artificial Intelligence (AI) have revolutionized the analysis of human movement, but the scarcity of specific samples presents a significant challenge in training intelligent systems, particularly in the context of diagnosing neurodegenerative diseases. This study investigates the feasibility of utilizing robot-collected data to train classification systems traditionally trained with human-collected data. As a proof of concept, we recorded a database of numeric characters using an ABB robotic arm and an Apple Watch. We compare the classification performance of the trained systems using both human-recorded and robot-recorded data. Our primary objective is to determine the potential for accurate identification of human numeric characters wearing a smartwatch using robotic movement as training data. The findings of this study offer valuable insights into the feasibility of using robot-collected data for training classification systems. This research holds broad implications across various domains that require reliable identification, particularly in scenarios where access to human-specific data is limited.
URI: http://hdl.handle.net/10553/127365
ISBN: 978-972-778-328-1
Fuente: 21st Conference of the International Graphonomics Society (IGS2023), p. 116-120.
Colección:Actas de congresos
Adobe PDF (1,8 MB)
Vista completa

Visitas

59
actualizado el 06-abr-2024

Descargas

23
actualizado el 06-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.