Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/124408
DC FieldValueLanguage
dc.contributor.authorCabrera-León, Ylermien_US
dc.contributor.authorGarcía Baez, Patricioen_US
dc.contributor.authorFernández-López, Pabloen_US
dc.contributor.authorSuárez-Araujo, Carmen Pazen_US
dc.date.accessioned2023-09-12T09:44:21Z-
dc.date.available2023-09-12T09:44:21Z-
dc.date.issued2023en_US
dc.identifier.isbn9781713873280en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/124408-
dc.description.abstractAlzheimer's Disease (AD) is one of the most prevalent aging-associated chronic diseases for the elderly population. Its prodromal stage is the Mild Cognitive Impairment (MCI). The detection of this stage versus AD is very difficult. We propose a new ontogenic neural architecture for dealing with the MCI-AD classification task. This is the Supervised Reconfigurable Growing Neural Gas (SupeRGNG), which is based on the Growing Neural Gas. We present a study on 495 Subjects from the Alzheimer's Disease Neuroimaging Initiative database, with 345 MCI and 150 AD. SupeRGNG yielded very good performance results just using six features related to neuropsychological tests: 0.98 accuracy, 0.98 specificity, 0.98 sensitivity, and 0.97 AUC. It outperformed many state-of-the-art proposals based on Deep Learning and neuroimaging. These findings suggest that our proposal may be an appropriate candidate for the early detection of AD in any clinical setting.en_US
dc.languageengen_US
dc.relation.ispartofProceedings Of The 2023 Annual Modeling And Simulation Conference, Annsim 2023en_US
dc.sourceProceedings of the 2023 Annual Modeling and Simulation Conference, ANNSIM 2023[EISSN ], p. 425-436, (Enero 2023)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherAlzheimer'S Diseaseen_US
dc.subject.otherArtificial Neural Networken_US
dc.subject.otherComputer-Aided Diagnosisen_US
dc.subject.otherGrowing Neural Gasen_US
dc.subject.otherMild Cognitive Impairmenten_US
dc.titleStudy on Mild Cognitive Impairment and Alzheimer's Disease Classification Using a New Ontogenic Neural Architecture, the Supervised Reconfigurable Growing Neural Gasen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2023 Annual Modeling and Simulation Conference, ANNSIM 2023en_US
dc.identifier.scopus85165495785-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57192423564-
dc.contributor.authorscopusid58499442700-
dc.contributor.authorscopusid57899101300-
dc.contributor.authorscopusid6603605708-
dc.description.lastpage436en_US
dc.description.firstpage425en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150365-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate02-07-2023-
crisitem.event.eventsenddate06-07-2023-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-5709-2274-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameCabrera León, Ylermi-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.