Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124408
Título: Study on Mild Cognitive Impairment and Alzheimer's Disease Classification Using a New Ontogenic Neural Architecture, the Supervised Reconfigurable Growing Neural Gas
Autores/as: Cabrera-León, Ylermi 
García Baez, Patricio 
Fernández-López, Pablo 
Suárez-Araujo, Carmen Paz 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Alzheimer'S Disease
Artificial Neural Network
Computer-Aided Diagnosis
Growing Neural Gas
Mild Cognitive Impairment
Fecha de publicación: 2023
Publicación seriada: Proceedings Of The 2023 Annual Modeling And Simulation Conference, Annsim 2023
Conferencia: 2023 Annual Modeling and Simulation Conference, ANNSIM 2023 
Resumen: Alzheimer's Disease (AD) is one of the most prevalent aging-associated chronic diseases for the elderly population. Its prodromal stage is the Mild Cognitive Impairment (MCI). The detection of this stage versus AD is very difficult. We propose a new ontogenic neural architecture for dealing with the MCI-AD classification task. This is the Supervised Reconfigurable Growing Neural Gas (SupeRGNG), which is based on the Growing Neural Gas. We present a study on 495 Subjects from the Alzheimer's Disease Neuroimaging Initiative database, with 345 MCI and 150 AD. SupeRGNG yielded very good performance results just using six features related to neuropsychological tests: 0.98 accuracy, 0.98 specificity, 0.98 sensitivity, and 0.97 AUC. It outperformed many state-of-the-art proposals based on Deep Learning and neuroimaging. These findings suggest that our proposal may be an appropriate candidate for the early detection of AD in any clinical setting.
URI: http://hdl.handle.net/10553/124408
ISBN: 9781713873280
Fuente: Proceedings of the 2023 Annual Modeling and Simulation Conference, ANNSIM 2023[EISSN ], p. 425-436, (Enero 2023)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.