Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/124319
Title: Accurate subvoxel location and characterization of edges in 3D images based on the Partial Volume Effect
Authors: Trujillo-Pino, Agustín 
Aleman-Flores, Miguel 
Santana-Cedrés, Daniel 
Monzón López, Nelson Manuel 
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
Issue Date: 2023
Project: A la ULPGC para análisis matemático de imágenes por CTIM 
Journal: Journal of Visual Communication and Image Representation 
Abstract: An accurate estimation of the position, orientation, principal curvatures, and change in intensity of the edges in a 3D image provides highly useful information for many applications. The use of derivative operators to compute the gradient vector and the Hessian matrix in each voxel usually generates inaccurate results. This paper presents a new edge detector which is derived from the Partial Volume Effect (PVE). Instead of assuming continuity in the image values, edge features are extracted from the distribution of intensities within a neighborhood of each edge voxel. First, the influence of the intensities of the voxels in first- and second-order edges is analyzed to demonstrate that these types of edges can be precisely characterized from the intensity distribution. Afterward, this approach is extended to especially demanding situations by considering how adverse conditions can be tackled. This extension includes filtering noisy images, characterizing edges in blurred regions, and using windows with floating limits for close edges. The proposed technique has been tested on synthetic and real images, including some particularly difficult objects, and achieving a highly accurate subvoxel characterization of the edges. An open source implementation of our method is provided.
URI: http://hdl.handle.net/10553/124319
ISSN: 1095-9076
DOI: https://doi.org/10.1016/j.jvcir.2023.103928
Source: Journal of Visual Communication and Image Representation [ISSN 1095-9076], v. 96, october 2023, 103928
Appears in Collections:Artículos
Adobe PDF (11,03 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.