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A B S T R A C T

An accurate estimation of the position, orientation, principal curvatures, and change in intensity of the edges
in a 3D image provides highly useful information for many applications. The use of derivative operators
to compute the gradient vector and the Hessian matrix in each voxel usually generates inaccurate results.
This paper presents a new edge detector which is derived from the Partial Volume Effect (PVE). Instead of
assuming continuity in the image values, edge features are extracted from the distribution of intensities within
a neighborhood of each edge voxel. First, the influence of the intensities of the voxels in first- and second-
order edges is analyzed to demonstrate that these types of edges can be precisely characterized from the
intensity distribution. Afterward, this approach is extended to especially demanding situations by considering
how adverse conditions can be tackled. This extension includes filtering noisy images, characterizing edges in
blurred regions, and using windows with floating limits for close edges. The proposed technique has been tested
on synthetic and real images, including some particularly difficult objects, and achieving a highly accurate
subvoxel characterization of the edges. An open source implementation of our method is provided.
1. Introduction

Edge detection is a common process in a wide variety of image
processing applications. In the case of 2D images, edges represent the
boundaries of the objects present in the scene. In many cases, pixel-
level edge detection is sufficient to determine the contours of the
objects. However, in certain applications, it is preferable to find the
edge curve at a subpixel level. When we deal with 3D images, such as
those generated by computed tomography (CT) or magnetic resonance
imaging (MRI), edges represent the surfaces of the objects. As with 2D
images, an accurate identification of edge features at a subvoxel level is
often necessary. These situations include medical imaging or metrology
applications, where a precise measurement of certain dimensions is
crucial. The main contribution of this work consists in introducing a
method which can obtain edge parameters with subvoxel precision and
the highest possible accuracy, both in ideal situations and in cases with
severe adverse conditions.

Most methods in the literature assume that an image is the sampled
version of a function 𝑓 (𝑥, 𝑦, 𝑧) over a voxel grid. In order to apply
differential calculus techniques on the image, it is also assumed that
𝑓 is continuous and differentiable within its domain. In this way,
derivative operators can be used to estimate the gradient vector and
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the Hessian matrix in those voxels where the intensity changes sharply.
From these estimations, some parameters of the surface that crosses
the voxels, such as orientation or principal curvatures, can be derived.
However, the results provided by this kind of approaches are not
accurate enough for demanding applications, and they cannot cope
with difficult situations.

To overcome these limitations, in this paper we consider that an
edge is an actual discontinuity in the function 𝑓 , and the intensity of
an edge voxel, where two 3D regions of different intensities coincide,
has an intermediate value that depends on the proportion of the voxel
covered by each region. This effect is known in the literature as the
Partial Volume Effect (PVE) (see [1–3]). We propose a method to revert
the PVE from the intensities within the neighborhood of an edge voxel,
and obtain the surface parameters with a high accuracy.

The proposed method relies on our 2D edge detector, explained
in [4], which has been extended to 3D images. Initially, we present a
method to accurately detect edges in ideal images of simple geometric
figures. Then, we adapt it to tackle different challenging scenarios. In
order to deal with noisy images, the equations and the neighborhood
are adjusted to use a previously smoothed version of the input image.
Although the smoothed image no longer complies strictly with the PVE,
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we estimate edge features in the original image from the values in
the smoothed one. In addition, a different type of neighborhood with
floating limits is introduced to avoid interference between extremely
close edges, so that they can be identified and treated separately.

The rest of the paper is organized as follows: Related works are
outlined in Section 2. In Section 3, the error obtained with the tra-
ditional derivative operators applied to 3D images is explained. The
basic version of our method for ideal images is presented in Section 4,
and an improved variant for noisy images is described in Section 5.
In Section 6, we deal with the problem of nearby edges, which alter
the estimation of each other. Section 7 presents some experiments
on synthetic images, real images of a phantom, and medical images,
together with a brief discussion about the method. Finally, Section 8
summarizes the main conclusions.

2. Related work

The first edge detectors developed for 3D images relied on the
computation of the gradient vector in every voxel in order to estimate
the magnitude of the contrast and the orientation of the surface. Within
this type of detectors, the Zucker–Hummel edge operator [5] is com-
monly used in medical imaging applications. In [6], Monga and Deriche
propose an extension of their optimal 2D edge detector to the 3D case.
In [7], Luo et al. use the 3D spatial moments to estimate the location,
contrast, and orientation of the surface. A method which generalizes the
Sobel operator to 3D is presented in [8]. In [9], Wang et al. propose
a template-matching approach, based on the Kirsch operator for 2D
images. These methods are able to obtain some edge features, but
cannot provide a function that satisfactorily describes the edge.

A different kind of detectors are based on the location of zero-
crossings and iso-density surfaces to obtain the edges as boundary
surfaces. In [10], Zhan and Mehrotra propose a rotationally invariant
3D step edge detector by optimizing a penalty function that combines
some criteria, such as signal-to-noise ratio, localization, and spurious
responses. In [11], a moment-based operator which uses several edge
profile models is applied to obtain the iso-density surface.

To cope with the anisotropic sampling in 3D Volume data, the
authors of [12] propose a surface detection operator that uses sig-
nal processing to extract a continuous anisotropic model, instead of
traditional interpolation. In [13], Brejl and Sonka propose a direc-
tional 3D edge detector for anisotropic data, interpolating the image
intensity function in a small neighborhood of each voxel by a tricubic
polynomial.

In order to obtain an estimation of the subvoxel position of the sur-
face, Wu and Wee [14] compute 3D directional derivatives using facet
models, and then locate the zeros of the 3D second directional deriva-
tive along the estimated gradient. In [15], another subvoxel surface
detector is presented, based on Sonka’s tricubic facet gradient operator,
but using an adaptive threshold to improve the performance when
processing images with non-uniform contrast. In [16], Bahnisch et al.
present a method based on the Canny edge detector, with a subsequent
phase of subvoxel refinement using B-spline-based interpolators.

Computing the curvatures of the surface is a very difficult task due
to the high sensitivity when measuring local second-order derivatives in
volume data. In [17], Bouma et al. propose a method to locate edges
with locally constant curvature in a very accurate way by using the
locally measured isophote curvature to correct the dislocation of the
curved surface due to Gaussian blurring. In [18], Hiranoy and Fels
propose an optimum surface fitting method to obtain the curvatures
on the boundary.

To tackle the effect of noise on the images, a deep study about mul-
tiscale edge extraction approaches as well as nonlinear diffusion and
wavelet approaches in 3 and higher dimensional images is presented
in [19]. In [20], Schug uses shearlets and wavelets algorithms to iden-
tify edges of complex objects, especially under high noise conditions.
2

Fig. 1. Image acquisition based on the PVE: (a) 3D image containing an object of
intensity 𝐴 inside a volume of intensity 𝐵. (b) Detail of a contour voxel.

In metrology applications, the accuracy of the measurements is
determining. In [21], the authors propose a method based on level
set and non-local means methods, oriented to detect corner and edge
features from noisy computed tomography (CT) images. Yagüe and
Ontiveros first proposed a method to obtain subvoxel precision based
on the 3D Canny detector in [22], and later a second method based
on Deriche’s 3D algorithm in [23]. Some recent works in metrology
focus on extracting the surface with subvoxel accuracy for X-ray CT
images [24,25].

Regarding medical imaging, recent works include a graph-based
multiple surface segmentation method in tomography images of the
eye [26], and a convolutional neural network to measure vessel wall
thickness of the intracranial arteries in magnetic resonance imaging
(MRI) [27].

The reconstruction of the whole surface of the objects in an image
is another important area [28–33], which requires obtaining accurate
data at a subvoxel level. This way, it is possible to reduce the error
in the computation of the surface, particularly with those methods
based on graph techniques [34,35]. Further approaches intend to locate
any kind of geometric structures, which are not necessarily aligned
with Cartesian axes. This task is critical within surface extraction
methods (see [36]), and can clearly benefit from an estimation of edge
parameters with subvoxel precision like that proposed in this paper.

3. Image acquisition based on the PVE

In this paper we consider that an edge is a discontinuity in the
intensity values of a function 𝑓 , and the intensity of an edge voxel
between two regions depends on the proportion of the voxel covered
by each region, strictly following the PVE assumption. Therefore, if an
edge between two volumes of homogeneous intensities 𝐴 and 𝐵 crosses
voxel (𝑖, 𝑗, 𝑘), the intensity of that voxel is:

𝐹𝑖,𝑗,𝑘 =
𝐴𝑉𝐴 + 𝐵𝑉𝐵
ℎ𝑥ℎ𝑦ℎ𝑧

,

where 𝑉𝐴 and 𝑉𝐵 are the volumes of the regions inside that voxel with
intensities 𝐴 and 𝐵, respectively, and (ℎ𝑥, ℎ𝑦, ℎ𝑧) denotes the voxel
size, so that ℎ𝑥ℎ𝑦ℎ𝑧 = 𝑉𝐴 + 𝑉𝐵 (see Fig. 1). Note that we consider the
possibility of dealing with non-isotropic voxels (when length, width and
height are not identical).

In the following sections, we develop an algorithm to accurately
extract edge features (position, orientation, curvatures, and change in
intensity) in each edge voxel, assuming the acquisition model described
above applies. In our approach, ideal images are those which com-
pletely comply with this assumption. This assumption is not taken into
account by traditional derivative operators to compute the gradient
vector and obtain the orientation of the surfaces, as described below.
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Fig. 2. Partial derivatives of the image of a solid sphere using traditional masks. In each case, the gray level of a voxel indicates: (a) Partial derivative in 𝑥. (b) Partial derivative
in 𝑦. (c) Partial derivative in 𝑧. (d) Gradient norm.
3.1. Error analysis with traditional derivative operators

Classical edge detectors usually compute the gradient vector in
each edge voxel to estimate edge parameters. This gradient vector
is generally estimated by means of convolutional masks for partial
derivatives, like classical Sobel or Prewitt operators for 2D images,
that can be extended to 3D using 3 × 3 × 3 masks, as proposed
in [37]. Nevertheless, neither the direction of the edge nor the change
in intensity can be accurately obtained with these gradient estimations.

Let us consider this generic mask for the partial derivative in the 𝑧
direction:

𝑀𝑧 =
1
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The masks for the other two main directions are similar. They are
an extension of the basic 2D masks to 3D, and the parameters 𝛼 and
𝛽 are used to adjust the contribution of the lateral rows and columns,
and the eight corners. In particular, Prewitt operator uses 𝛼 = 𝛽 = 4∕9,
whereas Sobel operator uses 𝛼 = 8∕15 and 𝛽 = 4∕15. Let us consider an
ideal image of a solid sphere. If the sphere and the surrounding area
have homogeneous intensities, the magnitude of the gradient should be
the same all across the surface of the sphere. Fig. 2 shows, in grayscale,
the estimation of the partial derivatives and the norm of the gradient
in each edge voxel when this type of masks are used. As observed, the
result is not accurate, since the norm of the gradient varies significantly
depending on the orientation of the edge, and should be constant.

Apart from computing the first order derivatives with these masks,
some methods compute the second derivatives using the Laplacian
operator to obtain the Hessian matrix (see [38]). Then, eigenvalues and
eigenvectors of this matrix are computed in each voxel, and finally a
quadratic surface is interpolated in order to estimate the subvoxel posi-
tion. The problem with this technique is that continuity throughout the
image is assumed, and PVE is therefore completely ignored, producing
errors in the position values.

With the aim of overcoming these limitations, we present a new ap-
proach for 3D subvoxel edge characterization in the following sections.
This approach provides an accurate estimation of all edge parameters,
including subvoxel position, orientation, curvatures, and change in
intensity.

4. Edge characterization in ideal images

In this section, we will extract those equations which allow us to
characterize an edge which crosses a voxel from the values in a neigh-
borhood of that voxel. In order to explain how these equations have
been obtained, we first exemplify our approach with a first-order edge
with slopes between 0 and 1. Then, a second-order edge is analyzed
to extend the previous description to curved edges. Afterward, these
expressions are generalized to all possible configurations depending on
3

Fig. 3. Ideal image with a single edge: (a) 3D scene to be acquired. (b) Intensities in
the acquired 3D image.

Fig. 4. First-order edge with positive slopes between 0 and 1: Voxels in the interme-
diate region could have values between 𝐴 and 𝐵 depending on the orientation of the
edge. Voxel (0,0,0) is highlighted in yellow.

the slopes. Finally, some synthetically generated images are used to test
and illustrate the applicability of the described method.

Let us consider an ideal 3D image 𝐹 with a single edge that divides
the image into two regions of intensities 𝐴 and 𝐵 (see Fig. 3). In this
scenario, our method should be able to obtain the subvoxel position of
the edge, its orientation and principal curvatures, and the change in
intensity between both sides.

4.1. First-order subvoxel edge detection for slopes between 0 and 1

Let us start by considering that the edge is a plane with slopes
between 0 and 1 that intersects the central voxel of the 3D image, as
in Fig. 3. For simplicity, let us consider that the coordinates of this
voxel are (0, 0, 0). The edge is described by the function 𝑦 = 𝑎+ 𝑏𝑥+ 𝑐𝑧,
where the coordinate system is centered at the middle point of the voxel
(0, 0, 0). This plane divides the volume into two regions of intensities 𝐴
and 𝐵. If 𝑎, 𝑏, 𝑐, 𝐴 and 𝐵 are unknown, the distribution of intensities
in the neighboring voxels is illustrated in Fig. 4, where voxels in the
intermediate region can have values between 𝐴 and 𝐵.
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Fig. 5. Addition of the intensities within certain columns at both sides of the edge:
(a) A 7 × 3 × 3 vertical window centered at an edge voxel ensures that the plane only
intersects side walls. (b) 4 voxels in each corner are used to estimate intensities 𝐴 and
𝐵.

Assuming the PVE applies, the intensities of the voxels follow this
expression:

𝐹 (𝑖, 𝑗, 𝑘) = 𝐵 + 𝐴 − 𝐵
ℎ𝑥ℎ𝑦ℎ𝑧

𝑃𝑖,𝑗,𝑘, (1)

where 𝑃𝑖,𝑗,𝑘 is the volume inside the voxel (𝑖, 𝑗, 𝑘) under the edge plane
(0 ≤ 𝑃𝑖,𝑗,𝑘 ≤ ℎ𝑥ℎ𝑦ℎ𝑧), and ℎ𝑥, ℎ𝑦, ℎ𝑧 are the dimensions of the voxel,
which are not necessarily equal.

Let us consider a 3 × 7 × 3 vertical window centered at voxel (0, 0, 0).
Seven rows are needed to ensure that the edge crosses the window from
left to right and from back to front, even in the worst case (slopes close
to 1, as shown in Fig. 5). Let 𝑆𝑀 , 𝑆𝐿, 𝑆𝑅, 𝑆𝐵 and 𝑆𝐹 be the sums of the
left, middle, right, back, and front columns of the window, respectively.
These sums are:

𝑆𝐿 =
3
∑

𝑛=−3
𝐹−1,𝑛,0 = 7𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝐿; (2)

𝑆𝑀 =
3
∑

𝑛=−3
𝐹0,𝑛,0 = 7𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝑀 ;

𝑆𝑅 =
3
∑

𝑛=−3
𝐹1,𝑛,0 = 7𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝑅;

𝑆𝐵 =
3
∑

𝑛=−3
𝐹0,𝑛,−1 = 7𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝐵 ;

𝑆𝐹 =
3
∑

𝑛=−3
𝐹0,𝑛,1 = 7𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝐹 ;

where 𝑉𝑀 , 𝑉𝐿, 𝑉𝑅, 𝑉𝐵 and 𝑉𝐹 represent the volumes inside each
column under the plane of the edge. These volumes, in turn, correspond
to the following expressions:

𝑉𝑀 = ∫

ℎ𝑧∕2

−ℎ𝑧∕2
∫

ℎ𝑥∕2

−ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧 =
ℎ𝑥ℎ𝑧

2
(

2𝑎 + 7ℎ𝑦
)

(3)

𝑉𝐿 = ∫

ℎ𝑧∕2

−ℎ𝑧∕2
∫

−ℎ𝑥∕2

−3ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧 =
ℎ𝑥ℎ𝑧

2
(

2𝑎 − 2𝑏ℎ𝑥 + 7ℎ𝑦
)

𝑉𝑅 = ∫

ℎ𝑧∕2

−ℎ𝑧∕2
∫

3ℎ𝑥∕2

ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧 =
ℎ𝑥ℎ𝑧

2
(

2𝑎 + 2𝑏ℎ𝑥 + 7ℎ𝑦
)

𝑉𝐵 = ∫

−ℎ𝑧∕2

−3ℎ𝑧∕2
∫

ℎ𝑥∕2

−ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧 =
ℎ𝑥ℎ𝑧

2
(

2𝑎 − 2𝑐ℎ𝑧 + 7ℎ𝑦
)

𝑉𝐹 = ∫

3ℎ𝑧∕2

ℎ𝑧∕2
∫

ℎ𝑥∕2

−ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧 =
ℎ𝑥ℎ𝑧

2
(

2𝑎 + 2𝑐ℎ𝑧 + 7ℎ𝑦
)

4

Fig. 6. Position and normal vector of the edge: The subvoxel position of an edge inside
a boundary voxel is given by the point 𝑃 = (0, 𝑎, 0), located on the vertical of the central
point. The normal vector to the surface of the edge is estimated at this point.

Using the expression for 𝑆𝑀 , we obtain the coefficient 𝑎 as follows:

𝑎 =
2𝑆𝑀 − 7(𝐴 + 𝐵)

2(𝐴 − 𝐵)
ℎ𝑦. (4)

Proceeding in a similar way with the other columns, we obtain the
coefficients 𝑏 and 𝑐:

𝑏 =
𝑆𝑅 − 𝑆𝐿
2(𝐴 − 𝐵)

ℎ𝑦
ℎ𝑥

, 𝑐 =
𝑆𝐹 − 𝑆𝐵
2(𝐴 − 𝐵)

ℎ𝑦
ℎ𝑧

. (5)

To estimate the intensities 𝐴 and 𝐵, we can use the four voxels at
the opposite corners of the window which are furthest apart from the
edge (see Fig. 5(b)):

𝐴 = 1
4
(𝐹1,3,1 + 𝐹1,3,0 + 𝐹0,3,1 + 𝐹1,2,1) and

𝐵 = 1
4
(𝐹−1,−3,−1 + 𝐹−1,−3,0 + 𝐹0,−3,−1 + 𝐹−1,−2,−1). (6)

Once we know the coefficients of the plane, we can extract the edge
features. We consider that subvoxel edge position is given by the point
of the plane located on the vertical of the voxel center, i.e., the point
𝑃 = (0, 𝑎, 0), where 𝑎 is the vertical distance from the center of the voxel
to the plane, as illustrated in Fig. 6.

The vector normal to the edge at that point is given by:

𝑁 = 𝐴 − 𝐵
√

1 + 𝑏2 + 𝑐2
[𝑏,−1, 𝑐] ,

and the norm of this vector indicates the change in intensity between
both sides of the edge.

4.2. Second-order subvoxel edge detection for slopes between 0 and 1

The location and characterization of plane edges (first-order) pro-
vides satisfactory results in most cases. However, some scenarios re-
quire a more accurate edge characterization, which includes an es-
timation of the curvatures of the edges. In order to estimate these
magnitudes, we approximate the edge by a second-order surface, 𝑦 =
𝑓 (𝑥, 𝑧) = 𝑎 + 𝑏𝑥 + 𝑐𝑧 + 𝑑𝑥2 + 𝑓𝑥𝑧 + 𝑔𝑧2.

Let us assume again that the slopes on the middle vertical axis of
the central voxel of the window are between 0 and 1. We keep the same
window size as in the previous subsection, although, in this case, we
cannot assure that the edge will always cross the window through the
lateral sides. To obtain the volumes inside each column under the edge
surface, we compute the equations in (3), but using the second-order
surface instead. The final expressions are as follows:

𝑉𝑀 =
ℎ𝑥ℎ𝑧
12

(

12𝑎 + 𝑑ℎ2𝑥 + 𝑔ℎ2𝑧 + 42ℎ𝑦
)

;

𝑉 =
ℎ𝑥ℎ𝑧 (

12𝑎 − 12𝑏ℎ + 13𝑑ℎ2 + 𝑔ℎ2 + 42ℎ
)

;
𝐿 12 𝑥 𝑥 𝑧 𝑦



Journal of Visual Communication and Image Representation 96 (2023) 103928A. Trujillo-Pino et al.
Fig. 7. Voxels selected for the estimation of intensities 𝐴 and 𝐵, and columns chosen to obtain 𝑆𝐷 depending on the sign of the partial derivatives: (a) 𝛼, 𝛽 < 0. (b) 𝛼 > 0 and
𝛽 < 0. (c) 𝛼, 𝛽 > 0. (d) 𝛼 < 0 and 𝛽 > 0.
𝑉𝑅 =
ℎ𝑥ℎ𝑧
12

(

12𝑎 + 12𝑏ℎ𝑥 + 13𝑑ℎ2𝑥 + 𝑔ℎ2𝑧 + 42ℎ𝑦
)

;

𝑉𝐵 =
ℎ𝑥ℎ𝑧
12

(

12𝑎 − 12𝑐ℎ𝑧 + 𝑑ℎ2𝑥 + 13𝑔ℎ2𝑧 + 42ℎ𝑦
)

;

𝑉𝐹 =
ℎ𝑥ℎ𝑧
12

(

12𝑎 + 12𝑐ℎ𝑧 + 𝑑ℎ2𝑥 + 13𝑔ℎ2𝑧 + 42ℎ𝑦
)

.

Proceeding as in the previous subsection, we compute the sum of the
five central columns 𝑆𝑀 , 𝑆𝐿, 𝑆𝑅, 𝑆𝐵 and 𝑆𝐹 . However, we need one
more equation in order to estimate all six coefficients of the surface. We
could make use of the four columns at the corners, but we discard the
two columns where the surface is furthest away from the central voxel
to avoid cases with very high slopes, since the surface might cross the
bottom or top of the window (the selected diagonal columns are labeled
as 𝑆𝐷 in Fig. 7). Therefore, our sixth equation is as follows:

𝑆𝐷 =
3
∑

𝑛=−3
𝐹−1,𝑛,1 +

3
∑

𝑛=−3
𝐹1,𝑛,−1 = 14𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝐷, (7)

where 𝑉𝐷 represents the sum of the volumes inside the two selected
diagonal columns, whose expression is the following:

𝑉𝐷 = ∫

3ℎ𝑧∕2

ℎ𝑧∕2
∫

−ℎ𝑥∕2

−3ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 𝑑𝑥2 + 𝑓𝑥𝑧 + 𝑔𝑧2 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧

+ ∫

−ℎ𝑧∕2

−3ℎ𝑧∕2
∫

3ℎ𝑥∕2

ℎ𝑥∕2

(

𝑎 + 𝑏𝑥 + 𝑐𝑧 + 𝑑𝑥2 + 𝑓𝑥𝑧 + 𝑔𝑧2 + 7
2
ℎ𝑦

)

𝑑𝑥𝑑𝑧

=
ℎ𝑥ℎ𝑧
6

(

12𝑎 + 13𝑑ℎ2𝑥 − 12𝑓ℎ𝑥ℎ𝑧 + 13𝑔ℎ2𝑧 + 42ℎ𝑦
)

Using the five equations in (2) and Eq. (7), we can obtain the values
for all the coefficients of the surface as follows:

𝑎 = 𝐼
12

(28𝑆𝑀 − 𝑆𝑅 − 𝑆𝐵 − 𝑆𝐹 − 𝑆𝐿 − 84(𝐴 + 𝐵));

𝑏 = 𝐼
ℎ𝑥

(𝑆𝑅 − 𝑆𝐿); 𝑐 = 𝐼
ℎ𝑧

(𝑆𝐹 − 𝑆𝐵);

(8)

𝑑 = 𝐼
ℎ2𝑥

(𝑆𝑅 + 𝑆𝐿 − 2 ∗ 𝑆𝑀 );

𝑓 = 𝐼
ℎ𝑥ℎ𝑧

(𝑆𝑅 + 𝑆𝐿 + 𝑆𝐹 + 𝑆𝐵 − 𝑆𝐷 − 2 ∗ 𝑆𝑀 );

𝑔 = 𝐼
ℎ2𝑧

(𝑆𝐹 + 𝑆𝐵 − 2 ∗ 𝑆𝑀 ),

where 𝐼 = ℎ𝑦∕2(𝐴 − 𝐵).
We remark that the first-order detection is a particular case of these

new expressions, when 𝑑, 𝑓 and 𝑔 are equal to zero. In some real cases,
first-order estimation might provide more accurate values, since it is
less sensitive to certain artifacts or noise. Taking into account that 𝑎
can be expressed as:

𝑎 = 𝐼
(

2𝑆 − 7(𝐴 + 𝐵)
)

−
𝑑ℎ2𝑥 + 𝑔ℎ2𝑧 ,
5

𝑀 12
we obtain the same expressions for 𝑎, 𝑏, 𝑐 as in the first-order method if
we set 𝑑 = 𝑓 = 𝑔 = 0 (see Eqs. (4)–(5)).

Using these six coefficients, the subvoxel position, the change in
intensity, and the normal vector, computed on the vertical center line of
the voxel, are obtained using the same expressions as in the linear case.
To estimate the principal curvatures and their associated vectors, we
use the equations described in Appendix A, included as supplementary
material.

4.3. Generalization to all orientations

In order to extend this method to locate edges with any orientation,
we must previously detect through what voxels the edge crosses, and
which is its main orientation (𝑥, 𝑦 or 𝑧) inside each voxel. The simplest
way consists in computing an estimation of the gradient in every voxel
using traditional derivative masks. Although we have previously argued
that these masks do not provide an exact value, they give us a first
approximation of the orientation of the surface.

Let 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 be the results of applying the partial derivative
masks in the 𝑥, 𝑦 and 𝑧 directions, respectively. Let us first consider the
case where |𝐹𝑦|ℎ𝑦 > |𝐹𝑥|ℎ𝑥, |𝐹𝑧|ℎ𝑧. This case includes the one presented
in the previous subsection. The five central sums are computed using
the equations in (2). Nevertheless, for the diagonal sum 𝑆𝐷, Eq. (7)
must be rewritten in the following way:

𝑆𝐷 =
3
∑

𝑛=−3
𝐹−1,𝑛,𝛾 +

3
∑

𝑛=−3
𝐹1,𝑛,−𝛾 = 14𝐵 + 𝐴 − 𝐵

ℎ𝑥ℎ𝑦ℎ𝑧
𝑉𝐷,

where 𝛾 = sign(𝐹𝑥𝐹𝑧). This allows avoiding the two columns containing
the edge voxels which are furthest from the central voxel (see Fig. 7).

To estimate the intensities on both sides of the edge, 𝐴 and 𝐵, we
must also adapt the equations in (6) in the following way:

𝐴 = 1
4
(𝐹𝛼,3,𝛽 + 𝐹𝛼,3,0 + 𝐹0,3,𝛽 + 𝐹𝛼,2,𝛽 ) and

𝐵 = 1
4
(𝐹−𝛼,−3,−𝛽 + 𝐹−𝛼,−3,0 + 𝐹0,−3,−𝛽 + 𝐹−𝛼,−2,−𝛽 ),

where 𝛼 = sign(𝐹𝑥𝐹𝑦) and 𝛽 = sign(𝐹𝑧𝐹𝑦).
The expressions for the six coefficients of the surface are the same

as in Eq. (8), except for 𝑓 , which is:

𝑓 =
𝛾𝐼
ℎ𝑥ℎ𝑧

(𝑆𝑅 + 𝑆𝐿 + 𝑆𝐹 + 𝑆𝐵 − 𝑆𝐷 − 2 ∗ 𝑆𝑀 ). (9)

Once the coefficients of the edge surface have been obtained, the
subvoxel position, the normal vector, and the principal curvatures and
directions are computed as in the previous subsection.

In case 𝐹𝑦 < 0, the sign of the curvatures must be inverted. The
reason is that this sign depends not only on the equation of the surface,
but also on whether the brighter region (i.e., with a higher intensity) is
concave or convex. For instance, given a solid sphere with intensities
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Fig. 8. Comparison of the errors in the estimation of the change in intensity (left), orientation (middle) and minimum curvature (right) on a solid sphere when using the proposed
method (top) and the traditional masks (bottom). Blue indicates low errors and red corresponds to high errors.
Table 1
Results obtained with each method when detecting the edge features of a solid sphere of radius 20.

Method Error Curvature

Intensity Orient. (ž) Pos. (%) Min. Max.

av. max. av. max. av. max. av. rad. av. rad.

Traditional operators 6.98 21.8 2.98 4.85 – – 0.020 51.3 0.040 24.8
Proposed (First-order) 0.00 0.00 0.15 0.53 0.65 1.50 – – – –
Proposed (Second-order) 0.00 0.00 0.15 0.53 0.25 0.83 0.047 21.1 0.053 19.0
𝐵 inside and 𝐴 outside, where 𝐴 > 𝐵, the curvature should be positive
for every point on the edge. Therefore, the maximum and minimum
curvatures, as well as the principal orientations, must be interchanged
when 𝐹𝑦 < 0 in order to obtain a coherent result.

For the other two scenarios, where |𝐹𝑦|ℎ𝑦 is not the greatest one,
we must proceed in a similar way, but interchanging the variables. For
example, if |𝐹𝑥|ℎ𝑥 > |𝐹𝑦|ℎ𝑦, |𝐹𝑧|ℎ𝑧, the window must be oriented along
the 𝑥 axis, the sums must be computed along the rows instead of the
columns, and the variables 𝑥, 𝑦 and 𝑧 must be exchanged.

4.4. Synthetic examples

In ideal images with planar edges, our method is capable of ac-
curately computing all the parameters. To illustrate how our method
overcomes the limitations of traditional approaches, we present the
results of applying the detector to ideal images of two different non-
planar objects, and compare them with the values obtained using
classical derivative operators. Fig. 8 shows a solid sphere of radius
20 voxels with intensities 0 inside and 255 outside, and the result of
applying both methods. With the aim of visualizing the results in a
suitable way, a small square for every edge voxel has been drawn,
centered at the subvoxel position that has been obtained, with the
orientation obtained for the edge in that voxel, and using a colormap
to illustrate the magnitude of the error. As observed, the accuracy of
our method is significantly higher for all the parameters (all voxels
are bluish with the proposed method, which means the error is low,
whereas numerous greenish and reddish voxels are obtained with the
traditional method, which means there are medium and high errors).

Table 1 shows the numerical errors in the estimation of intensity,
orientation (degrees), subvoxel position (measured as a percentage over
the length of a voxel), as well as the values for the curvatures (average
curvature and curvature radii). We remark that the errors with the
second-order method are very low when compared with traditional
masks. There is no error in the estimation of the change in intensity;
6

the maximum error in the orientation is approximately 0.5 degrees; the
maximum error in the subvoxel position is lower than 1% of the voxel
length; and the curvature radii are very close to 20 voxels.

The second example is a solid torus with major radius 𝑅 = 30
and minor radius 𝑟 = 10 voxels. This geometric object has constant
maximum curvature 𝑘𝑚𝑎𝑥 = 1∕𝑟 on all its surface, whereas the minimum
curvature 𝑘𝑚𝑖𝑛 varies from −1∕(𝑅−𝑟) at the closest points to the center,
to 1∕(𝑅 + 𝑟) at the furthest points. The estimations for the minimum
and maximum curvatures are shown in Fig. 9. Fig. 9(a) represents
the error obtained with the proposed method in the computation of
the maximum curvature, which is very low compared with the tradi-
tional method, shown in Fig. 9(b) (blue voxels represent lower errors).
Figs. 9(c) and Fig. 9(d) represent the value obtained for the minimum
curvature with both methods (in this case, blue voxels indicate a lower
curvature, while red voxels correspond to a higher curvature). The
expected values vary from −1∕20 on the inner side of the torus to
1∕40 on the outer side. This is coherent with the gradual change from
bluish to reddish values which has been obtained with our method
(Fig. 9(c)). However, the values obtained with the traditional operators
differ significantly from the expected ones (Fig. 9(d)).

In Fig. 10, we can see the principal directions obtained for the
torus. The small segments in each voxel indicate the directions obtained
for the minimum and maximum curvatures. Minimum and maximum
curvature directions are very accurate across the surface using the pro-
posed method. Not only do they vary gradually and smoothly following
the shape of the torus, but they also correspond with the expected
directions (Fig. 10 top). This does not happen with the traditional
masks, which generate inaccurate and oscillating directions (Fig. 10
bottom).

5. Location of edges in noisy images

The acquisition process frequently adds some noise to the image,

which translates into small variations in the intensity values. The
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Fig. 9. Estimation of curvatures: Error in the maximum curvature when using the proposed method (a) and with the traditional mask (b). Value of the minimum curvature
(ranging from − 1∕20 to 1∕40) when using the proposed method (c) and with the traditional masks (d).
Fig. 10. Detection of maximum (left) and minimum (right) curvature directions on a torus, using the proposed method (top), and using traditional masks (bottom).
traditional way to reduce noise consists in convolving the image with
a smoothing mask, such as a Gaussian kernel. The simplest 3D masks
are as follows:

𝐻 =
⎡

⎢

⎢

⎣

⎡

⎢

⎢

⎣

𝑎3 𝑎2 𝑎3
𝑎2 𝑎1 𝑎2
𝑎3 𝑎2 𝑎3

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝑎2 𝑎1 𝑎2
𝑎1 𝑎0 𝑎1
𝑎2 𝑎1 𝑎2

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝑎3 𝑎2 𝑎3
𝑎2 𝑎1 𝑎2
𝑎3 𝑎2 𝑎3

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

, (10)

where the following two conditions are met:

𝑎0 ≥ 𝑎1 ≥ 𝑎2 ≥ 𝑎3 and 1 = 𝑎0 + 6𝑎1 + 12𝑎2 + 8𝑎3.

Let 𝐹 be the ideal image in Fig. 3, with a single plane edge that
crosses the central voxel. Let 𝐺 = 𝐹 ∗ 𝐻 be the resulting smoothed
image, after convolving 𝐹 with the smoothing mask 𝐻 . We intend
to obtain the edge features in 𝐹 from the values in 𝐺. Nevertheless,
the region of voxels with intermediate values between 𝐴 and 𝐵 is
larger after the smoothing process. For this reason, we must use larger
windows (3 × 11 × 3) centered at every edge voxel to estimate edge
parameters properly.

5.1. Edge characterization after smoothing

Let us suppose that the slopes inside an edge voxel are between 0
and 1, and 𝐺𝑥, 𝐺𝑦 and 𝐺𝑧 are the partial derivatives computed on the
smoothed image 𝐺. Therefore, we assume that |𝐺𝑦|ℎ𝑦 > |𝐺𝑥|ℎ𝑥, |𝐺𝑧|ℎ𝑧
at that voxel.

Proceeding in the same way as in Section 4.2, we must define six
different sums of columns inside the window centered at each edge
voxel in order to obtain the coefficients of the second-order surface.
We know that the intensity of an edge voxel is given by Eq. (1). Let
7

𝑀𝑖,𝑚,𝑛,𝑘 be the sum of the column of voxels in 𝐹 from voxel (𝑖, 𝑚, 𝑘) to
voxel (𝑖, 𝑛, 𝑘). This sum is given by the following expression:

𝑀𝑖,𝑚,𝑛,𝑘 =
𝑛
∑

𝑗=𝑚
𝐹𝑖,𝑗,𝑘 = (𝐴 − 𝐵)

𝑉𝑖,𝑚,𝑛,𝑘
ℎ𝑥ℎ𝑦ℎ𝑧

+ 𝐵 (𝑛 − 𝑚 + 1) ,

where 𝑉𝑖,𝑚,𝑛,𝑘 represents the volume inside the column under the edge
surface, 𝑦 = 𝑓 (𝑥, 𝑧) = 𝑎+ 𝑏𝑥+ 𝑐𝑧+ 𝑑𝑥2 + 𝑓𝑥𝑧+ 𝑔𝑧2, whose expression is
as follows:

𝑉𝑖,𝑚,𝑛,𝑘 = ∫

(𝑖+1∕2)ℎ𝑥

(𝑖−1∕2)ℎ𝑥
∫

(𝑘+1∕2)ℎ𝑧

(𝑘−1∕2)ℎ𝑧

(

𝑓 (𝑥, 𝑧) − 2𝑚 − 1
2

ℎ𝑦
)

𝑑𝑧𝑑𝑥 =

= 𝑎ℎ𝑥ℎ𝑧 + 𝑏𝑖ℎ2𝑥ℎ𝑧 + 𝑐𝑘ℎ𝑥ℎ
2
𝑧 + 𝑑ℎ3𝑥ℎ𝑧

(

𝑖2 + 1
12

)

+

+ 𝑓𝑖𝑘ℎ2𝑥ℎ
2
𝑧 + 𝑔ℎ𝑥ℎ

3
𝑧

(

𝑘2 + 1
12

)

− 2𝑚 − 1
2

ℎ𝑥ℎ𝑦ℎ𝑧,

as long as the surface intersects neither the bottom nor the top of the
column.

Let 𝑆𝑖,𝑚,𝑛,𝑘 be the sum of the column of voxels in the smoothed image
𝐺 from voxel (𝑖, 𝑚, 𝑘) to voxel (𝑖, 𝑛, 𝑘), whose expression is as follows:

𝑆𝑖,𝑚,𝑛,𝑘 =
𝑛
∑

𝑗=𝑚
𝐺𝑖,𝑗,𝑘 = 𝑎0𝑀𝑖,𝑚,𝑛,𝑘

+ 𝑎1
(

𝑀𝑖−1,𝑚,𝑛,𝑘 +𝑀𝑖,𝑚,𝑛,𝑘−1 +𝑀𝑖,𝑚−1,𝑛+1,𝑘 +𝑀𝑖,𝑚+1,𝑛−1,𝑘
)

+

+ 𝑎1
(

𝑀𝑖,𝑚,𝑛,𝑘+1 +𝑀𝑖+1,𝑚,𝑛,𝑘
)

+ 𝑎2
(

𝑀𝑖−1,𝑚,𝑛,𝑘−1 +𝑀𝑖−1,𝑚−1,𝑛+1,𝑘 +𝑀𝑖−1,𝑚+1,𝑛−1,𝑘
)

+

+ 𝑎2
(

𝑀𝑖−1,𝑚,𝑛,𝑘+1 +𝑀𝑖,𝑚−1,𝑛+1,𝑘−1 +𝑀𝑖,𝑚+1,𝑛−1,𝑘−1
)

+ 𝑎2
(

𝑀𝑖,𝑚−1,𝑛+1,𝑘+1 +𝑀𝑖,𝑚+1,𝑛−1,𝑘+1 +𝑀𝑖+1,𝑚,𝑛,𝑘−1
)

+

+ 𝑎
(

𝑀 +𝑀 +𝑀
)

2 𝑖+1,𝑚−1,𝑛+1,𝑘 𝑖+1,𝑚+1,𝑛−1,𝑘 𝑖+1,𝑚,𝑛,𝑘+1
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Fig. 11. Errors in the detection of orientation on a solid sphere of radius 20 with noise added (from left to right: 𝜎 = 0, 5, 10). From top to bottom: method proposed in Section 4.1
applied to the original noisy image 𝐹 ; traditional method applied on the smoothed image 𝐺; smoothing-based method applied on the smoothed images.
+ 𝑎3
(

𝑀𝑖−1,𝑚−1,𝑛+1,𝑘−1 +𝑀𝑖−1,𝑚+1,𝑛−1,𝑘−1 +𝑀𝑖−1,𝑚−1,𝑛+1,𝑘+1
)

+

+ 𝑎3
(

𝑀𝑖−1,𝑚+1,𝑛−1,𝑘+1 +𝑀𝑖+1,𝑚−1,𝑛+1,𝑘−1 +𝑀𝑖+1,𝑚+1,𝑛−1,𝑘−1
)

+ 𝑎3
(

𝑀𝑖+1,𝑚−1,𝑛+1,𝑘+1 +𝑀𝑖+1,𝑚+1,𝑛−1,𝑡+1
)

.

From the previous expressions, we can define a six-equation linear
system for the edge voxel (0, 0, 0) as follows:

𝑆𝑀 = 𝑆0,−5,5,0; 𝑆𝐿 = 𝑆−1,−5,5,0; 𝑆𝑅 = 𝑆1,−5,5,0; (11)
𝑆𝐵 = 𝑆0,−5,5,−1; 𝑆𝐹 = 𝑆0,−5−,5,1; 𝑆𝐷 = 𝑆−1,−5,5,𝛾 + 𝑆1,−5,5,−𝛾 ;

where 𝛾 = sign(𝐺𝑥𝐺𝑧).
We also need to estimate the intensities on both sides of the edge.

We proceed in the same way as in Section 4.3, select the appropriate
corners depending on the orientation of the surface, and make use of
the following equations:

𝐴 = 1
4
(𝐺𝛼,5,𝛽 + 𝐺𝛼,5,0 + 𝐺0,5,𝛽 + 𝐺𝛼,4,𝛽 ) and

𝐵 = 1
4
(𝐺−𝛼,−5,−𝛽 + 𝐺−𝛼,−5,0 + 𝐺0,−5,−𝛽 + 𝐺−𝛼,−4,−𝛽 ),

where 𝛼 = sign(𝐺𝑥𝐺𝑦) and 𝛽 = sign(𝐺𝑧𝐺𝑦).
Finally, solving the previous equation system, we obtain the same

expressions for the coefficients of the surface that were obtained in
Eq. (8), except for the coefficient 𝑓 , that uses the generalized Eq. (9),
and for the coefficient 𝑎, whose expression is the following one:

𝑎 = 𝐼
(

2𝑆𝑀 − 11(𝐴 + 𝐵)
)

− 𝑘(𝑑ℎ2𝑥 + 𝑔ℎ2𝑧),

where 𝑘 is a constant that depends on the values of the smoothing mask
defined in Eq. (10), and whose value is:

𝑘 =
1 + 24𝑎1 + 96𝑎2 + 96𝑎3 .
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12
These expressions are also valid if we are interested in detecting
only first-order edges, setting 𝑑 = 𝑓 = 𝑔 = 0. With these values, the
edge surface is completely specified, and all the parameters of the edge
(intensity change, subvoxel position, orientation and principal curva-
tures) can be computed using the same equations as in the previous
sections.

In the presence of significant noise, we have observed that the
values 𝑎0 = 𝑎1 = 𝑎2 = 𝑎3 = 1∕27 for the smoothing mask (Eq. (10))
provide a better performance. However, when noise is very low, we
can increase the value of 𝑎0 and decrease the values for the rest of
the mask, in order to reduce the effect of the smoothing process. If we
choose 𝑎0 = 1 and 0 for the rest of values, it is equivalent to the method
proposed in the previous section, in which no smoothing is applied.

5.2. Synthetic examples

In order to show some examples of the method’s performance
with noisy images, we have tested our algorithm on two ideal images
with solid objects (a sphere and a torus), in which Gaussian noise
of different magnitudes has been added. The application of our orig-
inal method, presented in Section 4.3, and oriented to ideal images,
produces significant errors in the presence of noise. However, the pro-
posed smoothing-based method, explained in the previous subsection,
is significantly more accurate.

Fig. 11 shows the error in estimating the direction of the normal vec-
tor at each voxel, for different levels of noise, and using three different
methods: the original quadratic method applied to the original image,
the classical derivative operators applied to the smoothed image, and
the smoothing-based method proposed in this section, applied to the
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Fig. 12. Minimum curvature computed on a solid torus of radii 𝑅 = 40 and 𝑟 = 10 with noise added (from left to right: 0, 5, and 10). From top to bottom: method proposed in
Section 4.1 applied on the original noisy image 𝐹 ; traditional method applied on the smoothed image 𝐺; smoothing-based method applied on the smoothed image.
Table 2
Results obtained with different methods (original quadratic method, traditional derivative operators, and
smoothing-based method) when detecting the edges of a sphere of radius 20 affected by different noise levels.

Noise Method Error Curvature
Intensity Orient. (ž) Pos. (%) Min. Max.

av. max. av. max. av. max. av. rad. av. rad.

𝜎 = 0
2nd order 0.00 0.00 0.16 0.66 0.21 0.93 0.047 21.3 0.052 19.2
Trad. oper. 71.7 80.6 1.10 1.80 – – 0.025 40.6 0.028 35.4
Smoothed 0.00 0.03 0.28 1.02 0.12 1.03 0.050 20.0 0.051 19.7

𝜎 = 5
2nd order 1.93 7.53 2.33 8.03 5.36 32.5 0.015 68.1 0.257 3.89
Trad. oper. 71.7 82.7 1.15 2.57 – – 0.023 42.8 0.030 33.9
Smoothed 0.42 2.20 0.78 2.57 2.22 11.8 0.044 22.9 0.058 17.4

𝜎 = 10
2nd order 2.66 11.7 3.27 12.7 7.43 37.9 0.068 14.7 0.495 2.02
Trad. oper. 71.9 86.8 1.26 3.68 – – 0.021 46.9 0.032 31.7
Smoothed 0.61 2.70 1.08 4.38 3.02 16.5 0.043 23.2 0.061 16.3
m
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mage after smoothing. Important errors are observed when our original
uadratic method is applied to noisy images because it has been devel-
ped for ideal images (top row). The application of derivative operators
n the previously smoothed image improves accuracy in noisy images,
ut significant errors are observed, even in the noise-free image (middle
ow). With the smoothing-based method that we propose, errors are
maller for low levels of noise, and accuracy is preserved when there
s no noise (bottom row).

Table 2 shows the numerical errors in the estimation of intensity,
rientation (degrees), subvoxel position (measured as a percentage over
he length of a voxel), and curvatures (average curvature and curvature
adii). We can see that the average and maximum errors are lower with
he smoothing-based method than with the other two methods for all
dge features. Regarding the intensity change, traditional derivative
perators generate a very large error (greater than 70 units) due to
he previous smoothing of the image, which blurs the edges and makes
he magnitude of the intensity change smaller in the edge voxels. Our
9

w

ethod, on the other hand, has a fairly good estimation. With respect
o the estimation of curvatures, which are very sensitive to noise, we
lso see that the mean values for the curvature radii are closer to the
ctual radius of the sphere (20 units) with the proposed method, even
ith the highest level of noise (see highlighted values in bottom row).

Fig. 12 shows the results obtained with the three methods for the
mage of a torus of radii 30 and 10 with different noise levels. The color
n each voxel indicates the minimum curvature on the surface of the
orus. In this case, the expected values vary from −1∕20 on the inner
ide of the torus to 1∕40 on the outer side. This curvature is difficult to
stimate, especially in noisy conditions. However, we can see that it is
easonably well computed with the smoothing-based method.

. Location of nearby edges

The algorithm proposed in the previous section uses a 3 × 11 × 3
indow centered at every edge voxel of the smoothed image to estimate
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Fig. 13. Comparison between a single and two nearby edges: (a) – (c) Single edge separating two different intensity values. (d) – (f) Two close edges where the top region with
intensity 𝐶 affects the values in the window for the lower edge. (c) and (f) Result of the smoothing stage. Figure extracted from [4].
Fig. 14. Cross-section of partial derivative 𝐺𝑦 with (a) single and (b) double edges: The red curly brackets indicate the voxels which are considered in the estimation of edge
features for the yellow voxel if fixed limits are used. The blue curly bracket indicates the voxels which are considered when floating limits are used. Figure extracted from [4].
edge parameters. This is a relatively large region, where we assume
there is no other edge. However, in many real scenarios, we may have
to deal with very close edges within the same small subimage. In these
cases, the window might have three regions with different intensities,
delimited by two edges. If we directly applied the previously described
method, feature estimation would be wrong, since the smoothing stage
could alter the reference values. This is illustrated in Fig. 13 for a 2D
case, where the intensity of the pixels at the top of the window would
not be 𝐵 after the smoothing process (Fig. 13(f)).

6.1. Using windows with floating limits

The solution we propose is an extension of the 2D case, originally
introduced in [4], and consists in using floating limits for the columns
used in the estimation of edge parameters. Therefore, the sums of
Eq. (11) become:

𝑆𝑀 = 𝑆0,𝑚1 ,𝑚2 ,0; 𝑆𝐿 = 𝑆−1,𝑙1 ,𝑙2 ,0; 𝑆𝑅 = 𝑆1,𝑟1 ,𝑟2 ,0;

𝑆𝐵 = 𝑆0,𝑏1 ,𝑏2 ,−1; 𝑆𝐹 = 𝑆0,𝑓1 ,𝑓2 ,1; 𝑆𝐷 = 𝑆−1,𝑑1 ,𝑑2 ,𝛾 + 𝑆1,𝑑3 ,𝑑4 ,−𝛾 ;

where the limits 𝑙1, 𝑙2, 𝑟1, 𝑟2, 𝑏1, 𝑏2, 𝑓1, 𝑓2, 𝑚1, 𝑚2, 𝑑1, 𝑑2, 𝑑3 and 𝑑4
are computed for each case. These limits are determined by the voxels
where the derivatives are minimum within the corresponding column.
To illustrate the reason for such limits, Fig. 14(a) shows a cross-section
of the derivative across an edge after the smoothing process. If there
exists a single edge, fixed limits work properly. However, if there is a
second edge in the region used for edge characterization (Fig. 14(b)),
the sum must be limited as close as possible to the minimum within the
corresponding section, depicted by the dashed vertical line.

In order to estimate the intensities 𝐴 and 𝐵, we need to use the
voxels located in the limits of the window, selecting the appropriate
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columns in each case according to the orientation of the edge. Fig. 15
shows the four options.

Finally, we solve the new system of linear equations to obtain the
coefficients of the surface, according to the limits of the window:

𝑎 = 𝐼
(

2𝑆𝑀 − 𝐴(1 − 2𝑚1) − 𝐵(1 + 2𝑚2)
)

− 𝑘(𝑑ℎ2𝑥 + 𝑔ℎ2𝑧) (12)

𝑏 = 𝐼
ℎ𝑥

(𝑆𝑅 − 𝑆𝐿 + 𝐴(𝑟1 − 𝑙1) − 𝐵(𝑟2 − 𝑙2))

𝑐 = 𝐼
ℎ𝑧

(𝑆𝐹 − 𝑆𝐵 + 𝐴(𝑓1 − 𝑏1) − 𝐵(𝑓2 − 𝑏2))

𝑑 = 𝐼
ℎ2𝑥

(𝑆𝑅 + 𝑆𝐿 − 2 ∗ 𝑆𝑀 + 𝐴(𝑟1 + 𝑙1 − 2𝑚1) − 𝐵(𝑟2 + 𝑙2 − 2𝑚2))

𝑓 =
𝛾𝐼
ℎ𝑥ℎ𝑧

(𝑆𝑅 + 𝑆𝐿 + 𝑆𝐹 + 𝑆𝐵 − 𝑆𝐷 − 2 ∗ 𝑆𝑀+

+ 𝐴(𝑟1 + 𝑙1 + 𝑓1 + 𝑏1 − 𝑑1 − 𝑑3 − 2𝑚1)−

− 𝐵(𝑟2 + 𝑙2 + 𝑓2 + 𝑏2 − 𝑑2 − 𝑑4 − 2𝑚2))

𝑔 = 𝐼
ℎ2𝑧

(𝑆𝐹 + 𝑆𝐵 − 2 ∗ 𝑆𝑀 + 𝐴(𝑓1 + 𝑏1 − 2𝑚1) − 𝐵(𝑓2 + 𝑏2 − 2𝑚2))

In order to illustrate the advantages of using a window with floating
limits, Fig. 16 shows an image with two close solid spheres of radius
20 separated by 5 voxels (Fig. 16(a)). After smoothing, this distance
is lower (Fig. 16(b)). Let us consider the voxel marked in green. If
windows with fixed limits are used for the edges of one of the spheres,
these windows reach the other sphere and, therefore, the condition of
having a single edge inside the window is not met. For this reason, the
application of the method with fixed limits generates large errors in the
estimation of edge parameters (Fig. 16(c)). However, the use of win-
dows with floating limits solves this problem (Fig. 16(d)). Moreover,
even in the presence of noise, the method with floating limits is able
to work properly, as observed in Fig. 17.
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Fig. 15. Voxels chosen to estimate intensities 𝐴 and 𝐵 depending on the orientation of the surface: (a) |𝐺𝑥𝐺𝑦| < 0 and |𝐺𝑦𝐺𝑧| < 0. (b) |𝐺𝑥𝐺𝑦| > 0 and |𝐺𝑦𝐺𝑧| < 0. (c) |𝐺𝑥𝐺𝑦| > 0
and |𝐺𝑦𝐺𝑧| > 0. (d) |𝐺𝑥𝐺𝑦| < 0 and |𝐺𝑦𝐺𝑧| > 0.
Fig. 16. Example of the detection of close edges: (a) Image of two close solid spheres
and detail. (b) Smoothed image and detail, where the window (in yellow) used to
estimate edge parameters of the voxel colored in green reaches the other sphere. (c)
Result using the proposed method with fixed limits. (d) Result using the proposed
method with floating limits.

6.2. Tackling very close edges

The improvement proposed in the previous subsection solves the
problem of dealing with more than one edge in the same window, ex-
cept for an extreme situation in which two edges are so close that they
mutually interfere when a smoothing process is applied. In these cases,
not only must the window be divided into three regions, delimited by
both edges, but we also have to recover the original intensity of the
central region. It might have been blurred by both surrounding regions,
i.e., the intermediate intensity 𝐵 between the edges could have been
lost after the smoothing process, as seen in Fig. 18(c).

As illustrated in Fig. 18(d), we can detect this case by checking
that the minimum of the derivative of the intensity is not zero, and
values after that point, represented by the dashed vertical line, are
11
Fig. 17. Detection of close edges in noisy images: (a) Proposed method with fixed
limits applied to an image of two spheres with added noise with 𝜎 = 30. (b) Detection
using floating limits on the smoothed image.

not negligible. This scenario is depicted in Fig. 19(a), where there
are two very close edges, with intensities 200 between them and 100
outside. After smoothing, we obtain image 19(b). We are interested in
estimating edge features in the voxel marked in blue, which belongs
to the lower edge. This voxel is marked as edge voxel because its
absolute value in the derivative image (Fig. 19(c)) is maximum within
its column.

If our method was applied as above, the columns marked in red
would be used. In this case, the estimation for 𝐵 would be wrong
(voxels marked in green in Fig. 19(b)). The solution consists in first,
detecting that we are in a case with very close edges (derivative values
are significant beyond the window limit). Then, 𝐵 must be estimated
using the values in the original image (green voxels in Fig. 19(a)),
instead of using the smoothed version.

With this modification, another problem arises: when equations
in (12) are applied to obtain the values for the surface coefficients,
the estimation might be wrong because the values at the top of the
window (Fig. 19(b)) are not equal to the expected value 𝐵. We can
solve this issue by generating a new intermediate subimage 𝐹 ′, of
size 13 × 5 × 5, centered at the corresponding voxel, containing only
the edge that crosses it (Fig. 19(d)). This subimage will match the
original voxel values, except for the intensities of the voxels above
those used to estimate 𝐵, which will be substituted with 𝐵. Visually,
this new subimage is the same as the original one, but with the upper
edge removed. Then, subimage 𝐹 ′ is smoothed to obtain subimage
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Fig. 18. Extremely close edges: (a) Illustration of very close edges. (b) Digitized image. (c) Smoothed image, where the value of 𝐵 has been lost. (d) Cross-section of derivatives.
Figure extracted from [4].
Fig. 19. Analysis of very close edges and generation of the intermediate subimage: (a) Distribution of intensities in a section with two very close edges. (b) Smoothed image. (c)
Derivative image. (d) Generated intermediate subimage 𝐹 ′. (e) Smoothed subimage 𝐺′. Figure extracted from [4].
𝐺′ (Fig. 19(e)), and our method is applied on this new subimage to
estimate the coefficients.

Fig. 20 shows an image with two solid spheres separated by just
1 voxel. Without noise, the method is able to detect all the edges
and extract the intensities on both sides (Fig. 20(c)). In the presence
of noise, the use of floating limits and the individual estimation of
extremely close edges provide a quite satisfactory result, as observed
in Fig. 20(e).

7. Experimental results and discussion

In the previous sections, we have illustrated how the different stages
and variations introduced in the proposed method improve the results
and allow overcoming the difficulties caused by certain circumstances,
such as noise, close edges, or interference between edges. In this sec-
tion, we present a comparison with the 3D Canny edge detector, which
is one of the most widely used methods, as well as some additional
experiments to assess the proposed method in several synthetic images,
a real CT scan of an artificial object (phantom) whose actual measures
are known, and a medical image (CT angiography).

It is very difficult to compare the results with other edge detectors
in the literature that work at subvoxel level, since we have found
no method whose implementation is available, except for the widely
used Canny edge detector. The 3D images used in other works and
their associated ground truth are not publicly available either, making
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it impossible to apply our method to these images and conduct a
comparative analysis of the results. In order to facilitate the access
to ground truth for real and synthetic 3D images, and intending to
contribute to research reproducibility, all the examples1 presented in
this paper and the source code2 are freely available. The configuration
of the final method is based on four input parameters: a threshold
for the change in intensity to decide whether a voxel is considered
edge or not; the order of the function to fit edges (planes or quadratic
surfaces); a flag to indicate whether smoothing is previously applied
(noisy images) or not; and the size of the voxels in each dimension (in
millimeters).

7.1. Comparison with the 3D canny edge detector

This subsection presents a comparison between the proposed
method and a state-of-the-art technique. The chosen method for com-
parison is the 3D Canny detector, which serves as the foundation
for numerous detectors in the literature, such as [16,22]. The used
implementation is the Matlab source code found in [39]. Although this
version does not perform the calculation of principal curvatures, the

1 http://ctim.ulpgc.es/demo114
2 https://es.mathworks.com/matlabcentral/fileexchange/121088-accurate-

subvoxel-edge-location-for-3d-images

http://ctim.ulpgc.es/demo114
https://es.mathworks.com/matlabcentral/fileexchange/121088-accurate-subvoxel-edge-location-for-3d-images
https://es.mathworks.com/matlabcentral/fileexchange/121088-accurate-subvoxel-edge-location-for-3d-images
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Fig. 20. Detection of edges on two very close spheres without and with noise: (a) Two solid spheres separated by 1 voxel. (b) Detail of the image. (c) Detected edges in noiseless
image. (d) Edge detection after adding noise to the image. (e) Detection of edges on the smoothed image.
Fig. 21. Edge detection on a cross-section of a solid sphere of radius 𝟏𝟎: (a) Position and orientation applying 3D Canny detector. (b) Position and orientation using our proposal.
(c) Comparison of the 3D subvoxel position between Canny – blue dots – and our technique – red lines –.
estimation of three parameters (subvoxel position, edge direction, and
intensity difference) allows us to carry out the comparison.

The geometric object used for the comparison is a solid sphere of
radius 10 and intensity difference 100. This sphere strictly adheres to
the PVE assumption. To illustrate the difference between both methods,
Fig. 21 shows a cross section through the center of the sphere. Our
method aims to achieve high accuracy by specifically addressing the
reversal of PVE assumption. Conversely, the Canny method, based on
derivative operators for computing gradients and Hessians, assumes
continuity in the image function across all voxels, completely disregard-
ing PVE, and consequently introducing errors in all the parameters. As
observed in Fig. 21, edge positions are more homogeneously distributed
with our method than with the Canny detector. Moreover, edge orien-
tation changes more gradually with our method than with the Canny
detector.

The errors for the three parameters when applying both methods
on a sphere are shown in Fig. 22. As with Fig. 21, the distribution
of the detected edges is also optimal with our method, in the sense
that a single edge per column or row of the image (depending on the
surface slope) is returned. This does not occur with the Canny detector
in regions with high slope, producing edge voxel cluttering.

Table 3 shows the average and maximum errors. The errors obtained
by the proposed method are much lower.
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Table 3
Average and maximum errors obtained for both methods when detecting the edge
features of a solid sphere of radius 10.

Method Error

Intensity Orient. (ž) Pos. (%)

av. max. av. max. av. max.

3D Canny 5.23 12.6 1.30 2.75 13.9 31.8
Proposed method 0.00 0.00 0.39 1.32 0.17 0.76

7.2. Synthetic images

In this subsection, we present some examples to illustrate the per-
formance of our method with different objects. All the synthetic images
in this section have been generated using inner and outer intensities of
100 and 200, respectively. The threshold for the intensity change has
been set to 20 and voxel size is [1, 1, 1]. The first synthetic example
consists of several tori with different radii (see Fig. 23). The errors are
negligible for radii of curvature greater than 2 units, but some errors
appear for shorter radii of curvature. In particular, these errors arise
in those voxels where the surface does not cross the window from one
side to the opposite one (none of the four cases in Fig. 7).
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Fig. 22. Errors in the edge detection for a sphere of radius 10 comparing the Canny detector (top) and our proposal (bottom): (a) and (d) Errors for intensity change. (b) and
(e) Errors for orientation. (c) and (f) Errors for subvoxel position.
Fig. 23. Errors obtained in the estimation of the subvoxel position for tori with major radius 20 and minor radius: (a) 2.0, (b) 1.5 and (c) 1.0 units. An error of 0.1 corresponds
to 10% of the length of a voxel.
The second synthetic example is a tubular object with a varying
radius which follows the expression 5 + 3𝑠𝑖𝑛(𝑘𝑥). In this case, the
radius ranges from 2 units in the narrowest region to 8 units in the
widest one. To test the robustness of the method in the presence of
noise, Gaussian noise has been added to the image before applying
the detector (Fig. 24(b)). Figs. 24(c) and Fig. 24(d) show the radius
of curvature in every edge voxel (inverse of the maximum curvature)
for both the original and the noisy image. Similarly, Figs. 24(e) and
Fig. 24(f) show the directions of principal curvatures. As observed, the
results obtained for the edge parameters (subvoxel position, radius and
directions of curvature) are coherent with the expected results.

The third example (Fig. 25) is a helix with varying radii. The radius
of the tubular structure ranges from 6 units at the bottom to 2 units
at the top. In this case, the radius of the section of the helix decreases
linearly. As in the previous case, the method was tested on the original
image as well as on a noisy version. Figs. 25(c) and Fig. 25(d) show
the radius of maximum curvature obtained for each edge voxel. As
observed, the estimated radius varies from 6 units at the bottom (red)
to 2 units at the top (blue). Even with noise added to the image
(Fig. 25(d)), this tendency is maintained.

7.3. Phantom

Medical images are a clear example of 3D images that need to
be processed to compute different measurements of organs or tissues
and help the medical specialists in the diagnosis of a large variety of
diseases. To test the accuracy of the algorithms, artificial objects whose
measures are known, named phantoms, are constructed and scanned
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with the same devices that will be used with the patients. In this case,
we have used the phantom built by Martínez-Mera et al. in [40]. This
phantom represents a long blood vessel, consisting of a curved glass
tube with a mixture of water and a radiographic contrast media inside
(see Fig. 26(a)). The thickness of the glass is 1.5mm, and the tube has
an outer radius of 6.0mm and an inner radius of 4.5mm (Fig. 26(b)).
This phantom has been introduced in a CT scanner to obtain a 3D
image of 512 × 512 × 273 voxels, where the size of each voxel is
0.7 × 0.7 × 0.625 mm (non-isotropic voxels). To speed up the process
and ignore other surfaces present in the image that do not belong
to the phantom, our method is only applied to a subvolume of size
231 × 141 × 273 voxels, where the phantom is located. The image has
three regions with different mean intensities in Hounsfield units: 34240
inside, 35340 for the glass, and 32820 outside the tube (Fig. 26(c)).
In what follows, the references to intensity values are indicated in
Hounsfield units.

We must note that some edge voxels separate the glass from the
outer side of the tube, while others separate the glass from the inner
side, which represents a clear case of very close edges. For a better
validation of the results of our algorithm, all edge voxels have been
classified into one of these two groups. To identify to which group
each voxel belongs, we must take into account that the inner region is
significantly brighter than the outer region, and glass is brighter than
both of them. For this reason, we classify each edge voxel as outer or
inner edge according to whether the intensity of its darkest region is
lower or higher than 33530, respectively. Fig. 27 shows both groups of
voxels, and the color represents the change in intensity between both
sides of the edge (i.e. the difference between the intensity of the tube
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Fig. 24. Subvoxel detection in a variable-radius cylinder: (a) Cross-section of the original noise-free image. (b) Cross-section of the noisy image (with Gaussian noise added). (c)
and (d) Radius of curvature for both cases. (e) and (f) Directions of principal curvatures for both cases.

Fig. 25. Subvoxel detection in a helix with varying radii: (a) and (b) Cross-sections of the original noise-free image, and the noisy image (with Gaussian noise added), respectively.
(c) and (d) Radius of maximum curvature for both cases.
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Fig. 26. Detail of the phantom used to test the accuracy of the method: (a) Photograph of the phantom. (b) Measures of the tube. (c) Sample of the CT with approximate mean
intensities of the three regions.
Fig. 27. Change in intensity obtained for each edge voxel of the phantom: (a) Detail of the edges on the outer side. (b) Detail of the edges on the inner side. (c) Whole view of
the outer side of the tube. (d) Whole view of the inner side of the tube.
and that of the inner or outer region). The mean value obtained for
each group is 2489 for the outer side (Figs. 27(a) and Fig. 27(c), close
to the expected value 2520), and 1145 for the inner side (Figs. 27(b) and
27(d), close to the expected value 1100). The input parameters used for
the edge detector were 50 as intensity threshold, second order edges,
and previous smoothing. The execution time of the proposed method
for this image (8.9 megavoxels) is 5.4 s.

According to the measures of the tube, the maximum curvature for
the voxels belonging to the outer side of the tube must be close to
− 1∕6 ≈ −0.1666, whereas it must be 1∕4.5 ≈ 0.222 for the inner side. It
is negative for the outer side because the surface blends toward the
region with higher intensity. Fig. 28 shows the inverse of the maximum
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curvature for all edge voxels. For those on the outer side (Figs. 28(a)
and Fig. 28(c)), the average of the maximum curvatures is −0.174,
which is equivalent to a mean outer radius of 5.75mm, very close to
the expected 6.0mm. For voxels belonging to the inner side (Figs. 28(b)
and 28(d)), the average of the maximum curvatures is 0.280, which is
equivalent to a mean inner radius of 3.57mm. This latter value differs
somehow from the expected 4.5mm, but we must bear in mind that
curvature values are extremely sensitive.

The minimum curvature vector should be oriented in the main
direction of the tube for all edge voxels. Conversely, the maximum
curvature vector must be oriented along the section of the tube. Both
vectors must be perpendicular. Fig. 29 shows these two vectors for each
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Fig. 28. Radius of maximum curvature obtained for each edge voxel: (a) Detail of the edges on the outer side. (b) Detail of the edges on the inner side. (c) Whole view of the
outer side of the tube. (d) Whole view of the inner side of the tube.
Fig. 29. Directions of principal curvatures for each edge voxel. Minimum curvature vectors are displayed in red, and maximum curvature vectors in blue: (a) Outer side of the
tube. (b) Inner side of the tube.
edge voxel belonging to the outer (Fig. 29(a)) or inner side (Fig. 29(b))
of the tube. As observed, the result is coherent with the expected
directions.

In order to measure the accuracy in the estimation of the position
for both surfaces, several pairs of opposite points have been selected. To
identify these pairs of points, we look for those whose normal vectors
are 180° apart from each other and are also aligned with the same
straight line (up to a certain threshold) (see Fig. 30). The mean distance
between pairs of aligned points belonging to the outer side is 12.02mm
(Fig. 30(a)), whereas the mean distance is 9.08mm for points on the
inner side (Fig. 30(b)). Therefore, the estimated radii for the outer and
inner sides are 6.01 and 4.54mm, respectively, very close to the expected
values (6.0 and 4.5mm).

7.4. Medical images

A real chest CT angiography has been used to test the method on
images of non-synthetic objects in a real application scenario. This
image was scanned in the Department of Radiology of the University
Hospital of Santiago de Compostela, Spain [41]. Intravenous contrast
was injected in order to enhance the opacity of the blood in the image.
The resolution of the image is 512 × 512 × 500 voxels, with a voxel size
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of 0.5957mm in (𝑥, 𝑦), and a distance of 0.62mm between slices (non-
isotropic voxels). Voxel intensities range from zero to 3071 Hounsfield
units.

Fig. 31 shows three different slices of the image, 𝑆1, 𝑆2 and 𝑆3
(Figs. 31(a), 31(b), and 31(c), respectively). In order to assess the result
of the edge detection more clearly, let us focus on a smaller subvolume
of size 200 × 180 × 150 voxels, marked in red inside these slices.
Fig. 31(d) shows all the edges detected inside this subvolume. The
color represents the change in intensity between both sides of the edge.
The aorta (more specifically, the aortic arch) is the thickest vessel in
blue, with a mean intensity of approximately 470 units. There are three
thinner branches emerging from its upper side, which appear in the
slices of the original image as three small circular sections (as observed
in Fig. 31(a)). The other large vessel (in red in Fig. 31(d)) is the vena
cava, with an average intensity of 2800 units (brighter region in the
original image – see Figs. 31(a)–31(c)).

If we want to focus on a particular organ or structure in the
image, we need to have an approximate location or delimitation of
that element. For instance, in Fig. 31(e), we have used a voxel-level
segmentation of the aorta obtained using the method in [41], and we
only show the subvoxel parameters for those voxels which are close
to the boundary of this segmentation, removing all other vessels and
structures. The intensity threshold used for the edge detector was 110
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Fig. 30. Estimation of the radii of both sides of the tube: Pairs of points are selected so that they are aligned and their normal vectors are 180° apart from each other, approximately.
(a) Estimation for the outer side of the tube. (b) Estimation for the inner side. In each case, a sample pair of vectors has been enlarged.
Fig. 31. Result of applying the proposed technique to a real CT scan: (a), (b), and (c) Different slices in a CT angiography, with a selected subvolume marked in red. (d) Edge
detection inside the subvolume indicating the slices in (a), (b), and (c). (e) Selection of the edge voxels belonging to the aorta. Color in (d) and (e) indicates change in intensity
between both sides of the edge.
in Fig. 31(d) and 60 in Fig. 31(e). This is because we could be more
precise with the threshold when focusing on voxels belonging to the
aorta. The execution times for edge detection in these two subfigures
(5.5 megavoxels) were 8.4 (all edges) and 1.7 s (only aorta).

Fig. 32 shows the edge detection for a different subvolume of
the same CT image, corresponding to the abdominal area. Fig. 32(a)
shows all the edge voxels detected inside the subvolume, with the
color indicating the change in intensity. A different part of the aorta
(more specifically, the abdominal aorta) can be seen in blue, with some
ramifications (from top to bottom: celiac, superior mesenteric, and left
and right renals). We can also see the vena cava, which is the long
vessel whose color varies from cyan to red.

To illustrate the accuracy of our algorithm, Fig. 32(b) only shows
those edge voxels close to the boundary of the aorta. In this case,
the color of each voxel indicates the maximum curvature obtained.
Although this parameter is very sensitive, we can see that voxels
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belonging to the main body of the aorta have a lower curvature value,
indicating that the surface is smoothly curved, while voxels in the
ramifications have a higher curvature value, since they correspond to
thinner tubular structures. The execution times for edge detection in
these two subfigures (5.5 megavoxels) were 4.9 and 7.9 s.

7.5. Discussion

The experiments shown in the previous sections prove that the
proposed method is able to extract edge parameters with a high ac-
curacy and overcome the difficulties of certain adverse scenarios. The
introduction of the smoothing stage and the use of floating limits allow
dealing with noisy images and extremely close edges. Not only are the
position and orientation of the edges extracted with high accuracy, but
the main curvatures are also satisfactorily estimated. Moreover, the
distribution of the detected edges is also optimal in the sense that a
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Fig. 32. Result of applying the proposed technique to a real CT scan of the abdominal area: (a) Edge detection in a CT angiography, with the color indicating change in intensity.
(b) Representation of the edge voxels belonging to the aorta, where color indicates the maximum curvature.
single edge per column or row of the image (depending on the surface
slope) is returned, thus avoiding the edge voxel cluttering that occurs
with other detectors.

If we are interested in the position and orientation of the surface,
but the curvatures are not so relevant, the first-order method is more
robust and homogeneous. This is due to the fact that curvature es-
timation requires the computation of the second-order coefficients of
the function that fits the edge, which are quite sensitive. Similarly, in
images without noise, the original method may be more accurate than
the smoothing-based method. The reason is that the latter requires a
larger window for the estimation of edge features after applying the
smoothing mask, which can interfere with areas further away.

Our technique is also compatible with images of non-isotropic vox-
els where the three dimensions of every voxel are not equal, such
as those used in our non-synthetic examples (the phantom and the
chest CT angiography) and most 3D medical images. In these cases, the
parameters (position and curvature radii) are measured in millimeters
instead of voxels. This way, an ideal solid sphere scanned with a
non-isotropic sensor would produce edge voxels with equal principal
curvatures for all of them.

From a computational point of view, our method is very fast,
because it is mainly based on the sum of intensities within the rows
(or columns) of certain windows centered at each edge voxel. All the
experiments have been executed on an Intel Core i7-4790 CPU at
3.60 Hz. Considering run times, we can see that the size of the 3D
image is not so relevant as the number of edge voxels which are found.
Additionally, the method is slower if the number of voxels with nearby
edges is larger. The reason is that, in these cases, a synthetic subimage
of size 13 × 5 × 5 must be created and smoothed for each edge voxel
to extract edge features from it, as described in Section 6.2. This is the
case of angiographic images with many thin vessels (like some of the
figures in Section 7.4), and represents the slowest part of the method.

Considering large images, the experiments in Section 7.4 were
carried out in different subvolumes of a real chest CT angiography with
500 slices of size 512 × 512 voxels (131 megavoxels). Applying our
edge detector to the entire image produces 1.27 million edge voxels,
with a computing time of 131.1 s. In any case, in this work we have
focused on accuracy and not on speed. The proposed method can be
parallelized and could benefit from the power of GPU to greatly speed
up the times on large images. Moreover, providing the method with
a pre-segmentation or a region of interest can significantly reduce the
computational time.

Regarding the limitations of the proposed method, we must take
into account that our method aims to detect edges locally. Therefore,
when extracting the surfaces of higher-level structures with corners or
connected faces, such as polyhedral objects, our method would produce
errors in those voxels with sharp orientation changes. In these cases,
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proceeding first to detect the edges with smooth orientation variations
to obtain the faces of the objects, and then extracting their intersec-
tions, represents a better approach. Metrology applications embody a
clear example of this type of scenario.

Another limitation of our method is related to surfaces with very
high curvature. The equations of the method have been designed
considering the case in which the surfaces intersect the side walls of the
window that is centered at each edge voxel. However, those surfaces
with slopes close to 1 and a very high curvature could intersect the floor
or the ceiling of that window. In this case, small errors in the estimation
of the edge features would appear (the higher the curvature, the greater
the errors).

As regards noise, the method is quite robust and able to cope with
a certain amount of noise, although a very high level of noise would
obviously alter the estimations. With respect to contrast, one of the
configurable parameters indicates what level of contrast is considered
an edge. If this threshold is too low, many false edges will appear. If
it is too high, some actual edges will be missing. Therefore, we should
determine how selective we want to be depending on the context.

8. Conclusions

Image processing applications often require an extremely accurate
location of the edges in different modalities of 3D images, as well as a
precise description of certain features, such as orientation, curvature,
or change in intensity. Traditional methods frequently fail to provide
this information with a satisfactory accuracy.

A new and highly accurate method to obtain all the parameters
of the edges at a subvoxel level has been presented in this paper.
The detector is based on the assumption that the intensity of an edge
voxel between two regions with different intensities depends on the
portion of the voxel which is included within each region, known as
partial volume effect (PVE). The proposed algorithm has proved to be
very accurate on a comprehensive set of synthetic, phantom, and 3D
medical images. In the case of ideal images with isolated edges, all
edge parameters (subvoxel position, orientation, principal curvatures,
and change in intensity between both sides of the edge) are accurately
extracted.

In the presence of noise, the image is first smoothed and the method
is applied on the smoothed version by using larger windows, which
provides excellent results. The use of windows with floating limits
addresses the problem of nearby edges, avoiding interference between
the edges and providing more reliable estimations. Furthermore, when
the distance between two edges is very short, a synthetic subimage
centered at each edge voxel is created, which allows focusing on each
one of the edges, and avoids the interference produced by the other

one.
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The estimation of both the magnitudes and the directions of the
principal curvatures is especially sensitive, because these parameters
are related to second-order derivatives. Most edge detectors do not
compute these parameters accurately enough, but we have shown
that, in most cases, the proposed approach is capable of satisfactorily
estimating them.

Future directions of improvement include the parallelization of code
to use the GPU for faster run times on large images. An additional
functionality which could be included consists in obtaining surface
fragments for sets of contiguous voxels from the features extracted for
each of them. For instance, the complete surface of a vessel segment,
such as those in the experiments, could be generated. Furthermore, we
are developing a restoration algorithm that uses the results of the edge
detector to progressively improve image quality.

In summary, the proposed method for detecting edges with subvoxel
precision can be applied in all those fields which require a very accurate
estimation of the surface of the objects. The results support this appli-
cability, and the robustness of the estimations in challenging situations
show that this method overcomes the limitations of traditional masks
and can tackle challenging scenarios which could not be accurately
characterized using a classical approach.
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