Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/124056
DC FieldValueLanguage
dc.contributor.authorMorel, Jean Daviden_US
dc.contributor.authorMorel, Jean Michelen_US
dc.contributor.authorAlvarez, Luisen_US
dc.date.accessioned2023-07-25T14:57:54Z-
dc.date.available2023-07-25T14:57:54Z-
dc.date.issued2023en_US
dc.identifier.issn1553-734Xen_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/124056-
dc.description.abstractThe COVID-19 pandemy has created a radically new situation where most countries provide raw measurements of their daily incidence and disclose them in real time. This enables new machine learning forecast strategies where the prediction might no longer be based just on the past values of the current incidence curve, but could take advantage of observations in many countries. We present such a simple global machine learning procedure using all past daily incidence trend curves. Each of the 27,418 COVID-19 incidence trend curves in our database contains the values of 56 consecutive days extracted from observed incidence curves across 61 world regions and countries. Given a current incidence trend curve observed over the past four weeks, its forecast in the next four weeks is computed by matching it with the first four weeks of all samples, and ranking them by their similarity to the query curve. Then the 28 days forecast is obtained by a statistical estimation combining the values of the 28 last observed days in those similar samples. Using comparison performed by the European Covid-19 Forecast Hub with the current state of the art forecast methods, we verify that the proposed global learning method, EpiLearn, compares favorably to methods forecasting from a single past curve.en_US
dc.languageengen_US
dc.relation.ispartofPLoS Computational Biologyen_US
dc.sourcePLoS Computational Biology [ISSN 1553-734X], v. 19 (6), (Junio 2023)en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject3202 Epidemologiaen_US
dc.titleLearning from the past: a short term forecast method for the COVID-19 incidence curveen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1371/journal.pcbi.1010790en_US
dc.identifier.scopus85164210472-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57192870629-
dc.contributor.authorscopusid57203072257-
dc.contributor.authorscopusid55640159000-
dc.identifier.eissn1553-7358-
dc.identifier.issue6-
dc.relation.volume19en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages20en_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,652
dc.description.jcr4,3
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,7
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Modelos Matemáticos-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-6953-9587-
crisitem.author.parentorgDepartamento de Informática y Sistemas-
crisitem.author.fullNameÁlvarez León, Luis Miguel-
Appears in Collections:Artículos
Adobe PDF (4,58 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.