Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124056
Título: Learning from the past: a short term forecast method for the COVID-19 incidence curve
Autores/as: Morel, Jean David
Morel, Jean Michel
Alvarez, Luis 
Clasificación UNESCO: 120601 Construcción de algoritmos
3202 Epidemologia
Fecha de publicación: 2023
Publicación seriada: PLoS Computational Biology 
Resumen: The COVID-19 pandemy has created a radically new situation where most countries provide raw measurements of their daily incidence and disclose them in real time. This enables new machine learning forecast strategies where the prediction might no longer be based just on the past values of the current incidence curve, but could take advantage of observations in many countries. We present such a simple global machine learning procedure using all past daily incidence trend curves. Each of the 27,418 COVID-19 incidence trend curves in our database contains the values of 56 consecutive days extracted from observed incidence curves across 61 world regions and countries. Given a current incidence trend curve observed over the past four weeks, its forecast in the next four weeks is computed by matching it with the first four weeks of all samples, and ranking them by their similarity to the query curve. Then the 28 days forecast is obtained by a statistical estimation combining the values of the 28 last observed days in those similar samples. Using comparison performed by the European Covid-19 Forecast Hub with the current state of the art forecast methods, we verify that the proposed global learning method, EpiLearn, compares favorably to methods forecasting from a single past curve.
URI: http://hdl.handle.net/10553/124056
ISSN: 1553-734X
DOI: 10.1371/journal.pcbi.1010790
Fuente: PLoS Computational Biology [ISSN 1553-734X], v. 19 (6), (Junio 2023)
Colección:Artículos
Adobe PDF (4,58 MB)
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

17
actualizado el 14-oct-2023

Descargas

3
actualizado el 14-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.