Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/122161
Campo DC Valoridioma
dc.contributor.authorMartín González, Sofía Isabel-
dc.contributor.authorRavelo García, Antonio Gabriel-
dc.contributor.authorNavarro Mesa, Juan Luis-
dc.contributor.authorHernández Pérez, Eduardo-
dc.date.accessioned2023-04-28T09:16:15Z-
dc.date.available2023-04-28T09:16:15Z-
dc.date.issued2023-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://hdl.handle.net/10553/122161-
dc.description.abstractIn this paper, we thoroughly analyze the detection of sleep apnea events in the context of Obstructive Sleep Apnea (OSA), which is considered a public health problem because of its high prevalence and serious health implications. We especially evaluate patients who do not always show desaturations during apneic episodes (non-desaturating patients). For this purpose, we use a database (HuGCDN2014-OXI) that includes desaturating and non-desaturating patients, and we use the widely used Physionet Apnea Dataset for a meaningful comparison with prior work. Our system combines features extracted from the Heart-Rate Variability (HRV) and SpO2, and it explores their potential to characterize desaturating and non-desaturating events. The HRV-based features include spectral, cepstral, and nonlinear information (Detrended Fluctuation Analysis (DFA) and Recurrence Quantification Analysis (RQA)). SpO2-based features include temporal (variance) and spectral information. The features feed a Linear Discriminant Analysis (LDA) classifier. The goal is to evaluate the effect of using these features either individually or in combination, especially in non-desaturating patients. The main results for the detection of apneic events are: (a) Physionet success rate of 96.19%, sensitivity of 95.74% and specificity of 95.25% (Area Under Curve (AUC): 0.99); (b) HuGCDN2014-OXI of 87.32%, 83.81% and 88.55% (AUC: 0.934), respectively. The best results for the global diagnosis of OSA patients (HuGCDN2014-OXI) are: success rate of 95.74%, sensitivity of 100%, and specificity of 89.47%. We conclude that combining both features is the most accurate option, especially when there are non-desaturating patterns among the recordings under study.-
dc.languageeng-
dc.relation.ispartofSensors (Switzerland)-
dc.sourceSensors (Switzerland) [ISSN 1424-8220], v. 23 (9), 4267, (2023)-
dc.subject3314 Tecnología médica-
dc.subject.otherApnea detection-
dc.subject.otherCepstrum coefficients-
dc.subject.otherDetrended fluctuation analysis-
dc.subject.otherHeart rate variability-
dc.titleCombining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.3390/s23094267-
dc.identifier.issue9-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.description.notasThis article belongs to the Special Issue Advanced Machine Intelligence for Biomedical Signal Processing-
dc.description.numberofpages34-
dc.utils.revision-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,786-
dc.description.jcr3,847-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,8-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-5001-9223-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0001-7473-5454-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameMartín González, Sofía Isabel-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameHernández Pérez, Eduardo-
Colección:Artículos
Adobe PDF (2,57 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.