Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/122161
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Martín González, Sofía Isabel | - |
dc.contributor.author | Ravelo García, Antonio Gabriel | - |
dc.contributor.author | Navarro Mesa, Juan Luis | - |
dc.contributor.author | Hernández Pérez, Eduardo | - |
dc.date.accessioned | 2023-04-28T09:16:15Z | - |
dc.date.available | 2023-04-28T09:16:15Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.uri | http://hdl.handle.net/10553/122161 | - |
dc.description.abstract | In this paper, we thoroughly analyze the detection of sleep apnea events in the context of Obstructive Sleep Apnea (OSA), which is considered a public health problem because of its high prevalence and serious health implications. We especially evaluate patients who do not always show desaturations during apneic episodes (non-desaturating patients). For this purpose, we use a database (HuGCDN2014-OXI) that includes desaturating and non-desaturating patients, and we use the widely used Physionet Apnea Dataset for a meaningful comparison with prior work. Our system combines features extracted from the Heart-Rate Variability (HRV) and SpO2, and it explores their potential to characterize desaturating and non-desaturating events. The HRV-based features include spectral, cepstral, and nonlinear information (Detrended Fluctuation Analysis (DFA) and Recurrence Quantification Analysis (RQA)). SpO2-based features include temporal (variance) and spectral information. The features feed a Linear Discriminant Analysis (LDA) classifier. The goal is to evaluate the effect of using these features either individually or in combination, especially in non-desaturating patients. The main results for the detection of apneic events are: (a) Physionet success rate of 96.19%, sensitivity of 95.74% and specificity of 95.25% (Area Under Curve (AUC): 0.99); (b) HuGCDN2014-OXI of 87.32%, 83.81% and 88.55% (AUC: 0.934), respectively. The best results for the global diagnosis of OSA patients (HuGCDN2014-OXI) are: success rate of 95.74%, sensitivity of 100%, and specificity of 89.47%. We conclude that combining both features is the most accurate option, especially when there are non-desaturating patterns among the recordings under study. | - |
dc.language | eng | - |
dc.relation.ispartof | Sensors (Switzerland) | - |
dc.source | Sensors (Switzerland) [ISSN 1424-8220], v. 23 (9), 4267, (2023) | - |
dc.subject | 3314 Tecnología médica | - |
dc.subject.other | Apnea detection | - |
dc.subject.other | Cepstrum coefficients | - |
dc.subject.other | Detrended fluctuation analysis | - |
dc.subject.other | Heart rate variability | - |
dc.title | Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/s23094267 | - |
dc.identifier.issue | 9 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo | - |
dc.description.notas | This article belongs to the Special Issue Advanced Machine Intelligence for Biomedical Signal Processing | - |
dc.description.numberofpages | 34 | - |
dc.utils.revision | Sí | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | - |
dc.description.sjr | 0,786 | - |
dc.description.jcr | 3,847 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q1 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 10,8 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-5001-9223 | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.orcid | 0000-0003-3860-3424 | - |
crisitem.author.orcid | 0000-0001-7473-5454 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Martín González, Sofía Isabel | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
crisitem.author.fullName | Navarro Mesa, Juan Luis | - |
crisitem.author.fullName | Hernández Pérez, Eduardo | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.