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Abstract: In this paper, we thoroughly analyze the detection of sleep apnea events in the context of
Obstructive Sleep Apnea (OSA), which is considered a public health problem because of its high
prevalence and serious health implications. We especially evaluate patients who do not always
show desaturations during apneic episodes (non-desaturating patients). For this purpose, we use
a database (HuGCDN2014-OXI) that includes desaturating and non-desaturating patients, and we
use the widely used Physionet Apnea Dataset for a meaningful comparison with prior work. Our
system combines features extracted from the Heart-Rate Variability (HRV) and SpO2, and it explores
their potential to characterize desaturating and non-desaturating events. The HRV-based features
include spectral, cepstral, and nonlinear information (Detrended Fluctuation Analysis (DFA) and
Recurrence Quantification Analysis (RQA)). SpO2-based features include temporal (variance) and
spectral information. The features feed a Linear Discriminant Analysis (LDA) classifier. The goal
is to evaluate the effect of using these features either individually or in combination, especially in
non-desaturating patients. The main results for the detection of apneic events are: (a) Physionet
success rate of 96.19%, sensitivity of 95.74% and specificity of 95.25% (Area Under Curve (AUC): 0.99);
(b) HuGCDN2014-OXI of 87.32%, 83.81% and 88.55% (AUC: 0.934), respectively. The best results for
the global diagnosis of OSA patients (HuGCDN2014-OXI) are: success rate of 95.74%, sensitivity
of 100%, and specificity of 89.47%. We conclude that combining both features is the most accurate
option, especially when there are non-desaturating patterns among the recordings under study.

Keywords: apnea detection; cepstrum coefficients; detrended fluctuation analysis; heart rate
variability; linear and nonlinear analysis; non-desaturating patients; oxygen saturation; recurrence
quantification analysis

1. Introduction

Sleep apnea is a widespread sleep respiratory disorder characterized by disrupted
breathing during sleep. Sleep apnea events are classified according to the associated
respiratory effort. Obstructive Sleep Apnea (OSA) occurs when the upper airway collapses
and airflow is obstructed. However, when the upper airway is open and the respiratory
drive is absent or inhibited, i.e., there is no respiratory effort, it is considered Central Sleep
Apnea (CSA). Both types occur in Mixed Sleep Apnea (MSA). Although there are often
CSA episodes in OSA patients, pure CSA is uncommon.

OSA is the most common type of sleep apnea [1]. It is considered a public health
problem because of its high prevalence, which is 4% among men and 2% among women [1],
as well as its serious health implications, such as cardiovascular disorders, strokes, glucose
metabolism abnormalities, sudden death, or depression, that lead to increased mortality
rates [2]. However, other symptoms also severely affect quality of life, including daytime
drowsiness, snoring, weight gain, irritability, or memory problems [3,4]. The severity
of OSA is measured by the Apnea-Hypopnea Index (AHI), which represents the mean
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number of breathing pauses per hour. Apnea in adults is scored when there is a drop in
the peak signal excursion by ≥90% of the pre-event baseline using an oronasal thermal
sensor (diagnostic study), PAP device flow (titration study), or an alternative apnea sen-
sor, for ≥10 s. According to the definition, apneas may or may not be accompanied by
desaturations, but they will always be labeled as apneas. Therefore, apneic events may
be non-desaturating. Hypopnea in adults is scored when the peak signal excursions drop
by ≥30% of the pre-event baseline, using nasal pressure (diagnostic study), PAP device
flow (titration study), or an alternative sensor, for ≥10 s in association with either ≥3%
arterial oxygen desaturation or an arousal [5]. Apneas and hypopneas have similar patho-
physiology and, in general, similar impacts on patients [6]. AHI values lower than 5 are
considered normal, and patients with AHIs over 5 are diagnosed with OSA and ranked
according to the following ranges: (5, 15): mild sleep apnea; (15, 30): moderate sleep apnea;
>30: severe sleep apnea.

1.1. Motivation and Problem Description

Due to the severity of OSA, early diagnosis of the disease is strongly recommended so
that patients can receive appropriate and effective treatment. Polysomnography (PSG) is the
gold standard diagnostic tool for OSA. It records different physiological signals throughout
the night at the hospital, and it is supervised by qualified staff. The process is inconvenient
for the patient, time consuming, and very expensive for the health care system. Therefore,
efforts are geared towards developing alternative and simplified automatic, as well as
portable, OSA detection techniques that are based on fewer physiological signals, thus re-
ducing the time required for a final diagnosis. Several automatic OSA detection approaches
have been reported in the literature [7]. Some carry out patient sound analysis [8–10],
while others study airflow [11–13], abdominal and thoracic movement signals [14], and
even voice analysis [15,16]. However, most include statistical pattern recognition based
on characteristics extracted from single-lead electrocardiogram (ECG) signals [17–29] and
blood oxygen saturation (SpO2) [30–55], which are measured by a pulse oximeter. In some
cases, the single-lead ECG signal is combined with the SpO2 signal [56–61].

Standard Heart-Rate Variability (HRV) mirrors the autonomic neural regulation of
the heart and the circulatory system, and thus, changes are a result of different physio-
logical factors modulating the normal heart rate (HR) [62]. HRV studies are carried out
using the time elapsed between two successive R waves obtained by measuring the delay
between two consecutive R-peaks of the ECG. The RR series is the sequence of consecutive
delays. There is a strong physiological relationship between HRV and OSA [5]. During
normal sleep, parasympathetic and sympathetic control produce cyclic oscillations in the
RR intervals due to breathing phases (cardio-acceleration during inhalation and cardio-
deceleration during exhalation) called respiratory sinus arrhythmia (RSA) [5]. In general,
HRV frequency components are found between 0 and 0.5 Hz, and the RSA component
stands out at the breathing frequency, which is approximately 0.25 Hz. However, during an
apneic episode, increased sympathetic control in the cardiovascular system modifies this
cyclic oscillation pattern, and we find a brady-tachycardia pattern called ‘cyclic variation of
heart rate’ (CVHR) [5]. As a result of apnea repetition, the CVHR frequency components
appear in a frequency band ranging from 0.01 to 0.04 Hz [20]. However, it is worth noting
that HRV is influenced not only by apnea but also by many additional factors, such as sleep
stages, other diseases, or medication, which may mask the CVHR pattern [19].

The information contained in the SpO2 signal is also valuable for apnea detection
purposes, as it directly tracks the variations that typically take place in sleep apnea patients
during apneic events. Indeed, the American Academy of Sleep Medicine Task Force [5]
includes oxygen saturation as one of the conditions that characterizes obstructive sleep
apnea–hypopnea events. Oximetry levels in healthy adults range between 96% and 99%
and tend to remain constant, varying slightly with age and regardless of ethnicity, sex, or
weight [32,55]. Repeated apneic events usually lead to recurrent hypoxias and hypercapnias.
Therefore, a breathing disruption in sleep apnea usually results in an episode of hypoxemia
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that can be detected through a decrease in SpO2. This drop starts approximately 10 to
30 s after the apneic episode begins (slow desaturation) and normally starts to recover
shortly after hypoventilation ends (fast resaturation) [5]. All this adds up to more irregular
oximetry recordings in OSA patients with a typical saw-tooth morphology [49]. Moreover,
an apneic episode lasts between 30 s and 2 min, including the arousal, and repeated apneic
events lead to cyclical oxygen desaturations that take place with the same frequency. Thus,
the signal power of the frequency band, ranging from 0.01–0.033 Hz, is usually higher in
OSA patients [33] and is especially interesting for diagnostic purposes [40].

However, the SpO2 has an important drawback, as it has, in general, high specificity
in sleep apnea, but the sensitivity is typically lower [56,63]. This is because breathing
disruptions may not come accompanied by oxygen desaturations, especially if they are
short [58,64,65]. Increased upper airway resistance may also lead to the absence of oxy-
gen desaturations [66]. On the other hand, desaturations may also occur due to other
pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease
(COPD) or alveolar hypoventilation [67,68]. Thus, patients who suffer from COPD and
OSA simultaneously may experience more oxygen desaturations than those with only one
of the two conditions [54]. Hence, features obtained from the SpO2 signal may not exactly
mirror the apneic episodes, which could affect the performance of oximetry analysis [6].
Moreover, oximeters can also register poor quality SpO2 signals due to artifacts caused by
motion or poor perfusion [58,69]. These can be considered the main handicap in exclusively
using oximetry signals to detect apneas. Several authors have discussed this disadvantage
in their works [34,42,58,64]. In Section 4.3, we provide a thorough analysis of several factors
that can lead to non-desaturating apneas, which reinforce how important it is to avoid
basing OSA diagnosis exclusively on the SpO2 signal.

1.2. Review of Relevant Literature

As OSA is considered to be a major health problem, several studies over the last
20 years have focused on addressing two main goals: automatic sleep apnea diagnosis
(per-recording classification) and real-time detection of sleep apneic events (per-segment
classification or quantification). In this section, we will focus on those studies in the
literature that analyze extracting features from two of the most popular signals: the single-
lead ECG and the oximetry signal.

As far as the single-lead ECG is concerned, a wide variety of feature extraction tech-
niques have been followed to detect the pathological patterns underlying sleep apnea.
On the one hand, linear analysis has been put forward to detect information about the
periodicities taking place in the RR series [19,70,71]. On the other hand, nonlinear methods
have been introduced to reveal the complex autonomic and respiratory control mechanisms
that interact in the regulation of the cardiac function [18,19,27,72–77]. The reason is that
the cardiovascular system and, by extension, the HRV are considered dynamic, nonlinear,
and nonstationary [78,79]. Table 1 shows some relevant studies related to apnea detection
using the single lead ECG.

Concerning the use of the SpO2 signal in apnea detection, several authors have also
carried out works aiming to obtain further knowledge on oximetry dynamics associated
with OSA, thus improving the diagnostic ability of overnight oxygen saturation monitoring.
There are approaches that search for temporal OSA patterns [34,43,52,54], while others
introduce spectral analysis to detect the peak commonly present in the 0.010 to 0.033 Hz fre-
quency range during apnea [30,40,42,49,54]. More sophisticated techniques, such as nonlin-
ear analysis, have also been proposed [34,41,47,80,81]. Recently, other techniques based on
deep learning have also been presented [82,83]. The first studies that focused on sleep apnea
detection by means of SpO2 used the conventional time-domain oximetry indices [36,84].
However, these methods are not suitable for real-time analysis, as they only identify OSA
patients from whole overnight recordings. In the most recent works, conventional indices
were included for comparison purposes with newer techniques [54]. Zamarrón et al. [30]
were the first authors who introduced spectral analysis. They concluded, as did most



Sensors 2023, 23, 4267 4 of 34

authors who applied this technique, that, in general, spectral analysis and, in particular,
the frequency content of the apnea frequency band (0.010 to 0.033 Hz) are especially suited
for apnea detection [31,35]. Beyond these temporal and spectral features, there are also
studies which propose time-domain and frequency-domain statistics. Álvarez et al. [85]
reached, using the variance, the best performance within the time-domain statistics in the
single feature evaluation. They concluded that the conventional features from spectral
analysis perform, in general, better than other approaches. However, frequency-domain
statistics achieve lower performance. The nonlinear features proposed in the literature for
sleep apnea detection using the SpO2 signal include Poincaré parameters [50], approximate
entropy (ApEn) [31–34,38,46,80], sample entropy (SamEn) [45], central tendency measure
(CTM) [31–33,45–48], and Lempel–Ziv complexity (LZC) [31–34,38,45].

Table 1. Relevant studies related to apnea detection using the single lead ECG.

Works Description

Varon et al. [17]
There are two different features: one describing changes in the morphology of the ECG and one that
computes the information shared between respiration and heart rate using orthogonal
subspace projection.

Ravelo-García et al. [18] Symbolic dynamics variables in sleep apnea screening.

Penzel et al. [19] Comparison of the ability of spectral analysis and detrended fluctuation analysis (DFA) to identify
the CVHR in sleep apnea.

Karandikar et al. [25] RQA applied to HRV and to ECG Derived Respiratory (EDR) signals and different combinations to
assess the classification system.

Gutiérrez et al. [27] Evaluation of spectral entropy (SE) and multiscale entropy (MsE) of HRV signals in sleep apnea,
assessing gender differences.

Le et al. [39] Combination of RQA features and power spectral density (PSD), obtained from the RR series, and
Support Vector Machines (SVM) to determine sleep apnea events.

Mendez et al. [70] Extraction of time and spectral parameters from RR series and R-peak areas by using a time-varying
autoregressive model.

Schrader et a. [71] Analysis of the spectral components of HRV using Fourier and Wavelet Transformation with
appropriate application of the Hilbert Transform.

Al-Angari et al. [72] Nonlinear sample entropy to assess the signal complexity of HRV.

Maier and Dickhaus [74] The first authors who introduced RQA in sleep apnea studies and compared the results obtained
when using recurrence analysis and spectral techniques to HRV.

Mendez et al. [75] Comparison of system’s performance when sleep apnea is detected using empirical mode
decomposition (EMD) vs. wavelet analysis (WA).

Sharma et al. [76] Hermite basis functions to develop a sleep apnea detection technique using the ECG.

Cheng et al. [77] Modified version of RQA, heterogeneous RQA (HRQA), applied to sleep apnea.

There are two groups of studies in which the single-lead ECG signal is combined with
the SpO2 signal [56–61]. In the first, research focuses on AHI estimation and, thus, on OSA
diagnosis (per-recording classification) [56,86]. Raymond et al. [56] estimated the number of
respiratory event-related arousals by counting the number of autonomic arousals (based on
changes in the heart interbeat interval) that coincided with a rise in oximetry. They collected
an hourly index that was defined as the cardiac-oximetry disturbance index (CODI) and
assessed the correlation between the CODI and the AHI. LaFleur et al. [86] introduced
an automated algorithm for detecting the presence of Long QT Syndrome (LQTS), which
is associated with OSA. They also proposed a correlation classifier to correlate the ECG
signal and the SpO2 data, resulting in an estimated AHI. In the second group, the studies
carry out a real-time analysis aiming to detect apneic episodes on a minute-by-minute basis
(per-segment classification) [57,58]. Heneghan et al. [57] put forward an algorithm that
provided an estimation of apnea occurrences epoch-by-epoch and estimated an overall
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per-recording AHI. De Chazal et al. [58] proposed an algorithm to identify epochs as
normal or sleep-disordered breathing and to classify the pathological ones into one of six
classes: obstructive, mixed, and central apnea, as well as obstructive, mixed, and central
hypopnea. They derived an AHI estimation from this epoch-based classification approach
using frequency and time domain features from the ECG signal, as well as time-domain
oximetry features.

1.3. Objectives of This Study

In Section 1.1, we highlighted the limitations of using single-lead ECG and oximetry
signals, individually, to detect sleep apnea. There are several articles devoted to the study
of combining both signals for diagnostic purposes. However, to the best of our knowledge,
until now there has been no work reporting improved performance when these signals are
used alone vs. combined in patients who do not show marked oxygen desaturations during
apneic events, hereafter referred to as non-desaturating patients. In the literature, authors
only refer to non-desaturating patients within the limitations of the performed studies. In
our analysis, we include a dataset that clearly distinguishes, among control, desaturating,
and non-desaturating patients, the HuGCDN2014-OXI database, thus allowing a thorough
quantitative analysis of our system under different circumstances. Moreover, we assess
the performance of our system using the popular Apnea-ECG Physionet database. As for
meaningful comparison with prior work, results obtained from the same database must
be compared. Including both databases makes the results more generalizable, and thus,
conclusions would not be limited by database variability.

Thus far, there is no agreement about which features best describe the underlying
process when apnea occurs. That is why there is still huge pressure for new studies to better
understand the physiological mechanisms associated with sleep apnea that are mirrored in
HRV and SpO2. If we only took into account the saturation information to detect respiratory
events, we would find that, in some events, there is no desaturation, both in apneas and
hypopneas. That is why we hypothesize that we can improve the detection of respiratory
events using the information contained in the HRV and, thus, get closer to the AHI values.

Therefore, and according to our previous research [22,61,87,88], we propose a feature
combination that includes measures analyzed independently and that also had good results.
We specifically measure the discriminant capacity of feature combinations from HRV and
oximetry to assess its performance compared with that using oximetry-based features alone,
especially in non-desaturating patients.

Figure 1 shows a graphical representation of the system followed in the present work.
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2. Materials and Methods
2.1. Databases

We used two databases to carry out the experiments: the Apnea-ECG Physionet
database, hereinafter referred to as Physionet database, and the HuGCDN2014-OXI database.

2.1.1. Physionet Database

The Physionet database, available free of charge from the Physionet website [89],
was provided by Prof. Dr. Thomas Penzel for Computers in Cardiology Challenge 2000.
Since then, it has been widely used for sleep apnea studies. The eight recordings include
single-lead ECG (digitized at 100 Hz) and SpO2 signals (digitized at 8 Hz), as well as their
corresponding scores, on a one-minute basis. Therefore, our real-time system is designed to
give a minute-by-minute result. A physician, based on simultaneously recorded respiratory
signals, performed the labeling process. The recordings lasted approximately 8 h. Of the
eight recordings, five are sleep apnea patients with diverse AHI values, and three are
control subjects. Demographic characteristics are summarized in Table 2. More details
about the data are available in [89].

Table 2. Demographic information of Physionet database.

Record Sex Age
(Years) Minutes Nonapnea Apnea AHI

(Events/h)
BMI

(kg/m2)

a01 M 51 490 20 470 69.6 33.31

a02 M 38 529 109 420 69.5 37.04

a03 M 54 520 274 246 39.1 28.34

a04 M 52 493 40 453 77.4 40.43

b01 F 44 488 469 19 0.24 21.80

c01 M 31 485 485 0 0 21.86

c02 M 37 503 502 1 0 25.62

c03 M 39 455 455 0 0 19.20
Sex: M (male)/F (female), AHI: apnea-hypopnea index, BMI: body mass index.

In each of the databases, we must define the learning set (L-set) used in the training
process and the test set (T-set), for the assessment of the system. Concerning the Physionet
database, we have used a crossvalidation strategy in the assessment process, as only
8 patients are available, which has allowed us to reach statistically valid classification
results [38]. In each iteration, the system is trained with the L-set, made up of three OSA
patients and two control subjects, and assessed with the remaining patients (T-set).

2.1.2. HuGCDN2014-OXI Database

The HuGCDN2014-OXI database was provided by the Dr. Negrín University Hospital
(Las Palmas de Gran Canaria, Spain) and contains recordings of 83 subjects, each containing
the ECG signal, digitized at 200 Hz, and the SpO2 signal, digitized at 50 Hz. The sleep
studies and the labeling process were carried out following the American Academia of
Sleep Medicine (AASM) guidelines [5]. As in the Physionet database, a physician labeled
every minute based on simultaneous polysomnography, marking it as apnea or nonapnea.
There are three groups: (1) CONTROL: 38 healthy subjects with AHIs lower than 5 (range,
0–5); (2) DESATURATING PATIENTS: 34 OSA patients with AHIs higher than 25 (range,
30–106.3) who show desaturations during apneic episodes; 3) NON-DESATURATING
PATIENTS: 11 OSA patients with AHIs higher than 25 (range, 26.2–87.5) who do not always
show desaturations during apneic episodes. Patients are defined as non-desaturating
when their ODI is less than half their AHI. In our case, 75% of the non-desaturating
patients present an ODI less than 7.35 and an apnea total of less than 98, i.e., for 75% of
the non-desaturating patients, the percentage of desaturating apneic events is below 7.5%.
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Demographic characteristics are summarized in Table 3. Figure 2 shows the RR and SpO2
signals of all types of subjects: control, desaturating, and non-desaturating. Hand labeled
apnea events are depicted as red asterisks. As we can see, the behavior of the oximetry
signal in desaturating and non-desaturating patients differs significantly.

Table 3. Demographic information of HuGCDN2014-OXI database. Patients are defined as non-
desaturating when their ODI is less than half their AHI.

Parameter Control Desaturating Non-Desaturating All

Sample size
(male/female) 38 (28/10) 34 (27/7) 11 (7/4) 83 (62/21)

Age (years) 43.55 ± 12.71 53.97 ± 9.5 49.55 ± 6.68 48.61 ± 11.77

BMI (kg/m2) 29.24 ± 6.31 34.36 ± 5.62 30.57 ± 5.98 31.52 ± 6.5

Number of arousals 73.34 ± 28.14 248.85 ± 77.77 224.82 ± 95.59 165.31 ± 105.65

AHI (events/h) 2.04 ± 1.35 57.78 ± 21.08 42.51 ± 18.80 30.24 ± 30.44

ODI (events/h) 0.84 ± 0.74 52.07 ± 20.54 11.91 ± 9.85 23.29 ± 27.89

BMI: body mass index, AHI: apnea-hypopnea index, ODI: oxygen desaturation index.

The performance of the system for the HuGCDN2014-OXI database has been assessed
using three testing sets of patients. Before designing these sets, we have defined the L-set,
which is composed of half of the control and half of the desaturating patients. The test sets
are: (1) T1-set—half of the desaturating patients, none of whom is included in the L-set;
(2) T2-set—all non-desaturating patients; (3) T3-set—composed of three subsets: half of the
control patients excluded in the L-set, patients in T1-set, and patients in T2-set.
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Figure 2. RR and SpO2 signals of a control subject (A,D), a desaturating patient (B,E), and a non-
desaturating patient (C,F). Within the hand labeling, the red asterisks at the top represent apnea
minutes, and the red asterisks at the bottom represent nonapnea minutes. The behavior of the
oximetry signal in desaturating and non-desaturating patients differs significantly.

2.2. Signals Preprocessing

The ECG signal is divided into five-minute segments that are shifted, in time, in
increments of 1 min [19,21,23,26,28,90,91]. This frame length suits our analysis because
CVHR oscillations vary between 20 and 60 s, and CVHR recurrence is only recognizable
if there are several oscillations in the frame [90]. There is also a good balance between
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stationarity and good spectral resolution. The quantification obtained for each frame is
assigned to the central minute, thus achieving the scoring on a one-minute basis.

For each five-minute segment, the RR series is constructed as the sequence of delays
between consecutive R-peaks of the ECG. The R-peak detection is inspired by the Pan–
Tompkins algorithm [92]. After the creation of the RR series and before obtaining the
corresponding features, it is necessary to apply a procedure that automatically removes
artifacts and ectopic values. We used the method proposed by Wessel et al. for this
purpose [93]. The main advantage of this algorithm is that the adaptive filtering procedure
spontaneously adapts the filter coefficients to sudden changes in the RR series.

As far as the SpO2 signal is concerned, artifacts detected are mainly related to signal
interruptions due to poor contact between the finger and the sensor or due to a patient’s
movements, which appear as zero levels in the oxygen saturation. An automated algorithm
eliminates the zero values to remove them from the signal. Moreover, in the same process,
oxygen saturations below 50% are also considered artifacts, and they are removed from
analysis [38,42,60]. Finally, the mean is subtracted from the SpO2 signal [49,50]. The average
number of segments over each of the signals for each subject is 407 in HuGCDN2014-OXI
(from 302 to 474) and 495 in Physionet (from 455 to 529).

2.3. Feature Extraction
2.3.1. Oximetry Features

For the oximetry analysis, we extract both time-domain and frequency-domain fea-
tures, which provide complementary information about sleep apnea episodes.

(a) Time-domain features:

Oximetry is, under normal circumstances, a very stable signal. However, sleep apnea
events are commonly related to hypoxemias and, thus, to drops in the SpO2 values. These
changes are mirrored in the signal’s variance, which can be taken as a valuable measure
to uncover breathing disruptions. To decide the frame length to consider in the variance
analysis, it is important to take into account that a breathing pause is at least 10 s long and
can last over 50 s [5]. Therefore, 1 min segments are suitable for our study, as they detect
short and long apneic events. However, OSA patients may also have consecutive apneic
episodes. To consider this possibility, we include the 5 min variance in the analysis. Thus,
both variances are defined as varSAT1m and varSAT5m [61]. In the latter case, as in the
ECG signal, we consider 5 min segments, shifted in time in increments of one minute, and
the variance is assigned to the central minute.

(b) Frequency domain features:

As the signal power in the frequency band, ranging from 0.01 to 0.033 Hz, is usually
higher in OSA patients [33], spectral features are especially interesting for diagnostic
purposes. In our study, we obtain the power spectrum of the SpO2 signal by means of the
periodogram based on the Discrete Fourier Transform (DFT), according to Equation (1),

S(k) =
1
N
|XN(k)|2 (1)

where XN(k) is the DFT of the analyzed signal, and N represents the number of samples.
The samples of periodogram, S(k), are obtained for each 5 min oximetry segment, with
1 min of displacement between adjacent frames. To evaluate the information contributed
by each frequency band, we introduce a filter bank (Fbank-FbSAT) implemented directly
in the transformed domain [61]. We call M the number of filters in the filter bank, and
we have as many parameters as filters in the bank. The outcomes are an estimation of
the normalized power in each frequency band. As in the 5 min variance, we assign these
parameters to the central minute of the 5 min segment. According to previous research [61],
M = 20 is considered a suitable value for the number of filters for the oximetry signal. In
short, 22 features will represent every minute of the SpO2 signal.
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2.3.2. HRV Features

For each frame, we carry out frequency domain (Fbank-FbHRV) [18,22], cepstral do-
main (cepstrum coefficients-CC) [18,22,94], and nonlinear analysis. The latter includes
DFA [18,22] and RQA [87]. The feature vector representing each frame contains the combi-
nation of all the previous measures.

(a) Frequency domain features:

As in the oximetry signal, the frequency band of interest to detect the CVHR com-
ponents, due to apnea repetition, ranges from 0.01 to 0.04 Hz [20]. The procedure that
followed to extract spectral information is the same as in the SpO2 signal (explained
in Section 2.3.1 (b)). The only difference is that, according to the results in previous re-
search [18,22], the number of filters in the filter bank is set to M = 34, as this value gives the
frequency content analysis enough resolution, especially the CVHR and RSA components.

(b) Cepstral domain features:

Cepstral Analysis also detects periodic structures in signals, which appear as peaks in
the cepstral representation. The cepstrum coefficients (c(τ)) are found by taking the inverse
Fourier transform (F−1) of the logarithm of the magnitude of the RR spectrum (F(x(n))),
according to Equation (2). In the experiments, we introduce the real cepstrum, which uses
the spectrum’s magnitude only, thus obtaining information about the spectrum envelope,
as well as the harmonic components.

c(τ) = real
(

F−1(log(|F(x(n))|))
)

(2)

From the cepstral coefficients, we take the first 20 elements that we found in previous
work to contain relevant information of the underlying system [18,22].

(c) Detrended Fluctuation Analysis (DFA):

It is well known that RR series normally fluctuate in a complex, apparently erratic
manner [95]. A question we have faced is whether this heterogeneous structure arises from
the intrinsic dynamics of the heart rate or if fluctuations arise from a complex, nonlinear,
and dynamic behavior. This question has attracted our attention and is the reason we
applied it. In previous works [18,22], we have found that the heartbeat time series is often
highly non-stationary, and we have seen that the physiological process associated with
OSA can be characterized. In this context, DFA, which was first introduced by Peng et al.
in 1995 [96], is a good option to characterize the physiological process associated with OSA
and to detect apneic events.

RR series may possess long-memory structure, so DFA is well-suited as a scaling
analysis method. There are two main properties that make DFA especially valuable for
detecting apneic episodes [18,19,22]: (1) it can be applied to stationary and nonstationary
signals, and (2) it avoids spurious detection of long-range correlations in RR interval series
that are artifacts of nonstationarity [19].

The DFA parameters are approximated by power-law (3) [18,19,22,95–98]:

F(t) ∼ tα (3)

where α is called the scaling exponent. The scaling exponent is also the slope of the line
relating log F(t) to log t. For uncorrelated data, α = 0.5.

We have paid attention to the analysis of short-range and long-range correlations
in the RR series, which help discriminate apneic and nonapneic minutes. We introduce
two different scaling exponents. These are α1 (short-range correlations, for time scales t
between 10 and 40 beats) and α2 (long-range correlations, for time scales t between 70 and
194). The limits for the time scales are based on previous work [18,19,22].

(d) Recurrence Quantification Analysis (RQA):
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A recurrence plot (RP), first proposed by Eckmann et al. [99], is a two-dimensional plot
that represents a binary symmetric square recurrence matrix. An RP is useful to visualize
the recurrence characteristics of systems. This matrix shows the times when two states
can be considered neighbors in the phase space, according to a certain threshold [100]. It
is considered especially useful to uncover hidden periodicities and characteristics that,
otherwise, would remain unnoticed [101].

The first step prior to constructing the RP of a time series, u(t), is embedding. The most
widely used strategy to carry out this process is the Takens time delay method [102]. This
procedure aims to reconstruct a multivariate phase space that represents the original system
from a single measured variable of that system [100]. It, therefore, generates time-delayed
copies of the variable under study, so the original time series is considered a dimension
of the underlying system, and each of its delayed copies becomes a new dimension of the
system. A phase state,

→
x i, is defined as follows Equation (4):

→
x i = [u(i), u(i + τ), . . . , u(i + (m− 1)·τ)] (4)

where τ is the time delay and m is the embedding dimension. The delay is chosen to
achieve variable independence, while avoiding state vectors that are autocorrelated [103].
The dimension represents the number of independent variables influencing the system
under study. The delay is commonly chosen by calculating the first local minimum or the
first zero crossing of the autocorrelation or mutual information [100]. For the dimension, the
false nearest neighbors (FNN) method is the most widely used. A neighbor is considered
a false neighbor when it is defined as a neighbor only because the dimension of the state
space is too small. The dimension is increased in integer steps until the number of false
nearest neighbors drops to zero [104]. In our experiments, and according to previous
work [87], we concluded that working with dimensions of approximately 7–8 and delays
of approximately 4–5 yield the best results in two different datasets, supporting the idea
that reached results are potentially generalizable. In this work, the values for dimension
and delay are m = 7 and τ = 4 for the Physionet database and m = 8 and τ = 5 for the
HuGCDN2014-OXI database, which were considered optimal for the same databases in
previous work [87].

After embedding, the RP is constructed according to the following equation:

Ri,j = Θ(εi −
∥∥∥→x i −

→
x j

∥∥∥), i, j = 1, 2, . . . , N (5)

where N is the number of reconstructed points
→
x i, ε is the threshold distance, Θ is the

Heaviside function (Θ(x) = 0 if x < 0 and Θ(x) = 1, otherwise), and ||·|| is the norm [101].
First, we construct a distance matrix (DM), and afterwards, we apply a cutoff distance
to find the recurrence matrix (RM). This process results in an N × N symmetric matrix,
containing Ri,j = 1, if

→
x i and

→
x j are neighbors, according to the ε-threshold, and Ri,j = 0, if

not. The RP is the graphical representation of the RM. For stochastic or chaotic signals, RPs
are formed by isolated points with no, or very short, diagonal structures, whereas periodic
and deterministic signals show longer diagonals with less single recurrence points [105].

Apart from the embedding parameters, delay, and dimension, the other crucial pa-
rameter is the distance threshold in the RP is ε. There are two approaches to define it.
We can either choose a fixed value so that εi = ε, called the Fixed Distance Method, or
we define this parameter so that each point of the trajectory is surrounded by a constant
number of neighboring states, i.e., εi changes for each state, called Fixed Amount of Nearest
Neighbors (FAN) Method. The latter case results in a constant density of recurrence points
in each column [106]. Although, in general, the Fixed Distance Method is used more often
than the FAN Method, we introduce the FAN Method with 5% of neighbors, according to
previous results [87], this approach greatly improves the system performance using the
Fixed Distance Method.
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After constructing the RP, we obtain the RQA measures. RQA is the quantitative
analysis of RP structures that allows us to obtain information about the system dynamics.
There are features based on the recurrence density, as well as on the diagonal, vertical,
and horizontal line structures that appear in the RP [101]. Moreover, another group of
features can be derived from RPs, which are related to recurrence times [107]. Finally, we
also include new measures originating in the complex network theory, such as clustering
coefficient or transitivity [108], which, when applied to recurrence matrices, are more
powerful and reliable for detecting periodic dynamics [109,110]. In our analysis, we found
17 features for each RR 5 min frame. Table 4 shows the RQA features included in the feature
set. In our experiments, we used the Cross Recurrence Plot Toolbox (CRP Toolbox) [111].

In summary, 73 features will represent every 5 min RR frame (spectral analysis: 34,
DFA: 2, cepstrum: 20, and RQA: 17).

2.4. Feature Selection

After preprocessing and obtaining the features of both signals, HRV and SpO2, we
carry out a feature selection process. This procedure helps us find a reduced feature set,
made up of those variables that differentiate the two classes best, i.e., apneic and nonapneic
minutes. Furthermore, this technique has other advantages: (1) it prevents overfitting by
ruling out redundant and irrelevant features, (2) it reduces computational load, and (3) the
selection facilitates the physiological interpretation of the results. In our analysis, we use
a repeated random sub-sampling validation that leads to dimensionality reduction and
increased accuracy [22,61,87,94,112]. This method evaluates the performance of a feature
group, taking into account their interactions, unlike other feature selection techniques
proposed in the literature, which only assess individual features [17,29,113]. We carry
out the feature selection algorithm for the three different feature combinations: all HRV
variables (73), all SpO2 variables (22), and the whole set of HRV and SpO2 variables (95).

Table 4. RQA features included in the feature set.

Based on Recurrence Density: Recurrence Rate (REC)

Based on diagonal line structures:

Determinism (DET)
Average diagonal line length (L)
Length of the longest diagonal line (Lmax)
Shannon Entropy (ENTR)

Based on vertical line structures:
Laminarity (LAM)
Trapping Time (TT)
Maximal length of vertical lines (Vmax)

Recurrence times:

Recurrence Time type 1 (T1)
Recurrence Time type 2 (T2)
Mean Recurrence Time (RT)
Maximal Recurrence Time (RTmax)
Minimal Recurrence Frequency (RF)
Entropy of White Vertical Lines (ENTW)
Recurrence Period Density Entropy (RPDE)

Measures originating in the complex network
theory:

Clustering Coefficient (Clust)
Transitivity (Trans)

In the procedure, we only use the learning set (L-set), as defined for each of the
databases in Section 2.1. The graphical representation of the feature selection process is
shown in Figures 3 and 4 for both databases. In the HuGCDN2014-OXI database, the L-set
is divided into two equally sized groups that form a training set and a validation set, each
containing the feature vectors of the randomly selected patients in each iteration. Thus, we
avoid feature vectors from one patient being in both the training set and the validation set
simultaneously. For this dataset, the number of iterations is set to 200, as this value provides
stable results. In the Physionet database, as the training set is always made up of three OSA
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patients and two control subjects, and the validation set is the rest of the 8 subjects, the total
number of possible combinations is 30. That is why there are 30 iterations in this database.
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In the procedure, we only use the learning set (L-set) defined for HuGCDN2014-OXI.

The whole process is divided into two steps. First, we create the feature ranking
according to the number of times a certain feature is selected by the sequential forward
feature selection method (based on the classifier performance). In each iteration, the optimal
feature set corresponds to the maximum accuracy in the validation set. Second, repeating a
random sub-sampling validation process again, we obtain the error rate for an increasing
number of features. They are entered in the same order as they appear in the ranking
created in step one. This procedure assesses the averaged misclassification error, obtained
for the validation data, while increasing the number of features. The final selected features
will be those with the minimum averaged misclassification error. In all cases, the number
of features selected is smaller than the original number of features.

2.5. Classifiers

The detection of apneic episodes is carried out on a minute by minute basis, thus
allowing real-time analysis. The proposed classifier is LDA, widely used for apnea detection
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and with good results [24,31,33,61]. Moreover, LDA also balances performance, complexity
and interpretation, unlike other pattern recognition techniques that require setting different
model parameters by the user, leading to a more complex training process [31]. We balanced
the classes using an under-sampling strategy [114].

3. Results

The main objective of the data analysis presented below is to evaluate the benefits
found, both for the minute-by-minute classification of apneic events and for the overall
classification of patients. In both cases, we focus, especially, on what happens when the
subjects affected by OSA do not present clear desaturation patterns (non-desaturating
patients). Likewise, we analyze the selected characteristics when using HRV variables,
SpO2 variables, and when both types are combined. This procedure evaluates the relative
importance of each one in the detection of apneas and, indirectly, in the characterization
of the physiological system associated with this phenomenon. The measures considered
for the system evaluation include classification rate, sensitivity, specificity, and AUC (Area
Under Curve), where curve refers to ROC (Receiver Operating Characteristic).

Within these parameters, sensitivity is considered especially relevant in the medical
setting [32]. Sensitivity reflects the ability to correctly detect apneic minutes, within quan-
tification, and OSA patients in per-recording classification. However, specificity shows
the ability of the system to distinguish normal minutes and healthy patients, respectively.
There is usually a compromise between both values, namely sensitivity and specificity.
However, for the diagnosis of OSA or the detection of apneic episodes in general, we
are more interested in a high sensitivity that reduces the risk of false negatives, as the
impact of incorrect classification on a patient diagnosed with OSA will be greater than if
the classification is incorrect in healthy patients [49,60]. This is especially important in this
type of pathology, given the serious long-term health consequences. On the other hand, the
AUC values will allow us to evaluate the system’s performance, regardless of the working
point (threshold) selected on the ROC curve.

3.1. Per-Segment Classification and Characteristic Selection

As pointed out in the previous sections, the considered HRV characteristics include
those gathered through spectral analysis (FbHRV), cepstral analysis (CC), and nonlinear
analysis (two DFA variables and 17 RQA variables). On the other hand, oximetric character-
istics include variables corresponding to spectral analysis (FbSAT) and two variables related
to temporal signal analysis (varSAT1m and varSAT5m). The features, selected according to
the procedure shown in Section 2.4, are the input of a LDA classifier. In both databases, the
results correspond to the point on the ROC curve with the shortest distance to the upper
left vertex.

Table 5 contains the test results obtained with the Physionet database using crossvali-
dation. Tables 6–8, corresponding to the HuGCDN2014-OXI database, distinguish between
three cases: test results of desaturating patients (T1 test set) are shown in Table 6, results of
non-desaturating patients (T2 test set) are in Table 7, and results of the whole set of control
subjects, desaturating, and non-desaturating patients (T3 test set) are in Table 8. Each of the
Tables 5–8 shows results attained by introducing only HRV characteristics, only oximetric
characteristics, and by combining them.

Table 5. Per-segment performance (test results) in Physionet, depending on the features. Combining
electrocardiographic and oximetric characteristics yields the best results with 12 variables.

Features N(OR.) 1 N(RED.) ACC SENS SPEC AUC

HRV 73 7 92.71 92.38 93.3 0.983
SpO2 22 6 95.76 95.37 94.51 0.986

HRV + SpO2 95 12 96.19 95.74 95.25 0.990
1 (N(OR.): original number of features, N(RED.): number of selected features, ACC: classification rate (accuracy),
SENS: sensitivity, SPEC: specificity, AUC: area under the ROC curve).
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Table 6. Per-segment performance (test results) in HuGCDN2014-OXI (only desaturating patients),
depending on the features. When we consider oximetric variables or combine both types, the results
are very similar, reaching values that are approximately 10% higher than those reached only with HRV.

Features N(OR.) 1 N(RED.) ACC SENS SPEC AUC

HRV 73 17 74.639 82.846 65.888 0.838
SpO2 22 15 82.230 98.507 64.871 0.925

HRV + SpO2 95 24 82.689 97.967 66.396 0.930
1 (N(OR.): original number of features, N(RED.): number of selected features, ACC: classification rate (accuracy),
SENS: sensitivity, SPEC: specificity, AUC: area under the ROC curve).

Table 7. Per-segment performance (test results) in HuGCDN2014-OXI (only non-desaturating pa-
tients), depending on the features. According to classification rates, sensitivities, and AUCs, the
values are lower than those reached in desaturating patients.

Features N(OR.) 1 N(RED.) ACC SENS SPEC AUC

HRV 73 17 72.230 72.278 72.205 0.777
SpO2 22 15 76.374 51.236 89.481 0.829

HRV + SpO2 95 24 77.816 59.786 87.217 0.847
1 (N(OR.): original number of features, N(RED.): number of selected features, ACC: classification rate (accuracy),
SENS: sensitivity, SPEC: specificity, AUC: area under the ROC curve).

Table 8. Per-Segment performance (test results) in HUGCDN2014-OXI (control subjects, desaturating,
and non-desaturating patients), depending on the features. These results represent a real system,
tested with healthy subjects and OSA diagnosed patients (desaturating and non-desaturating). For
the main parameters (classification rate, sensitivity, and AUC), using only the HRV features yields the
worst results, which improve using only SpO2 variables, but we obtain the best results by combining
both feature types.

Features N(OR.) 1 N(RED.) ACC SENS SPEC AUC

HRV 73 17 77.220 78.127 76.904 0.854
SpO2 22 15 86.782 81.683 88.564 0.926

HRV + SpO2 95 24 87.323 83.812 88.549 0.934
1 (N(OR.): original number of features, N(RED.): number of selected features, ACC: classification rate (accuracy),
SENS: sensitivity, SPEC: specificity, AUC: area under the ROC curve).

The first database, Physionet, does not distinguish between desaturating and non-
desaturating patients. However, as it is one of the most widely used databases for sleep
apnea studies, the results obtained will allow us to compare the performance of the pro-
posed system with other existing systems in the literature. In general, we can conclude
from Table 5 that the system performs very well with this database. As far as the AUC
values are concerned, in all cases, they are higher than 0.98. Namely, results indicate that
only six oximetric characteristics provide slightly better performance than the seven HRV
characteristics. When we combine the two types of characteristics, there is another increase
in the AUC, but it is at the cost of increasing the number of variables to 12. The classification
rate and sensitivity behave similarly to the AUC. However, in this case, the increase when
applying the oximetric characteristics, both in the classification rate and in the sensitivity, is
approximately 3%, compared to those reached by the HRV characteristics. Moreover, the
improvement obtained by combining both types of variables does not, in any case, exceed
1% compared to the values shown for SpO2 characteristics. The previous analysis indicates
that combining electrocardiographic and oximetric characteristics yields the best results
with 12 variables. However, the improvement is so small that, in this case, the introduction
of the two signals would not be justified. Therefore, for this database, we would propose
the use of six oximetric features.

However, these results cannot be considered conclusive given the limited number of
patients under study.
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Nonetheless, studying Tables 6–8, belonging to the HuGCDN2014-OXI database, we
can explore the real purpose of this analysis, as it distinguishes between desaturating and
non-desaturating patients. The first two tables (Tables 6 and 7) contain the results for each
type of patient (desaturating and non-desaturating). Finally, Table 8 shows the results
representing a real system, in which the tested subjects can be healthy or diagnosed with
OSA (desaturating and non-desaturating).

Table 6, corresponding to desaturating patients, shows that the classification rates
are lower when only HRV features are used. When we consider oximetric variables or
combine both types, the results are very similar, reaching values that are approximately 10%
higher than those reached only with HRV. The sensitivity results are high (>82%). As with
the classification rates, the oximetric variables, or the combination of oximetric and HRV
variables, provide the best results for sensitivity (higher than 97%). Finally, AUC shows a
similar behavior. There is an approximate 10% increase when using SpO2 features instead
of HRV variables. When both types are combined, the value reached is practically the same
as the values gained with only SpO2. Therefore, in this case, oximetric features are the most
appropriate because, similar to the HRV + SpO2 combination, it uses 24 characteristics
instead of 15 (SpO2).

Table 7 shows the results obtained for non-desaturating patients. According to clas-
sification rates and AUCs, we can conclude that the values are lower than those reached
in desaturating patients (Table 6). This indicates that the detection of apneic events is
more difficult in non-desaturating patients than in desaturating ones. Moreover, there is
a progressive increase in the results, between 2 and 5%, when using HRV features, SpO2
features, and a combination of both types. This behavior also differs from that observed
in Table 6. However, the most noteworthy aspect is related to sensitivity. HRV features
provide the best values (72%). These results contrast with those obtained for desaturat-
ing patients, where HRV features yielded the lowest sensitivities and classification rates.
However, when we include SpO2 variables in non-desaturating patients, sensitivity drops
considerably, as expected. Nevertheless, the most relevant result is related to the increase
in sensitivity, from 51.24% to 59.79%, when using HRV + SpO2 features instead of SpO2
features alone.

As stated above, Table 8′s results represent a real system tested with healthy subjects
and OSA diagnosed patients (desaturating and non-desaturating). For the main param-
eters (classification rate, sensitivity, and AUC), using only the HRV features yields the
worst results, which improve using only SpO2 variables, but we obtain the best results by
combining both feature types.

For the feature selection process, Figure 5 shows the evolution of the averaged error
rate to the number of selected features for both training and validation (see Section 2.4).
The horizontal dotted line represents the misclassification error obtained without feature
selection, and a circle indicates the point with the minimum validation error rate. What
is particularly interesting is that there are cases with a clear minimum, as in Physionet
with SpO2 features, and other cases in which, for a given range of features, the error rates
are very similar, as in Physionet when HRV and SpO2 features are combined. In the latter
cases, we could, therefore, reduce the number of features indicated in the third column of
Tables 5–8, since with a smaller number of variables, results would be very similar. The
column headers of Table 9 (Physionet) and Table 10 (HuGCDN2014-OXI) show the number
of features for each case. We only see one value if there is a clear minimum. However, if we
can reduce the number of variables, we indicate it with an arrow and the reduced number.
In the latter cases, thicker lines delimit these variables in their respective columns.

Tables 9 and 10 also show the selected features after the feature selection process for
both databases. The order in which they appear is in agreement with the feature ranking
created according to the number of times a certain feature is selected by the sequential
forward feature selection method. The three columns contain the chosen variables when
HRV, SpO2, or HRV + SpO2 features are used. Regarding HRV, the algorithm proposes the
combination of variables containing spectral, cepstral, and non-linear information (both
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DFA and RQA). Although the number of selected features in both databases is different,
some are always in the final set, namely the first and fourth cepstrum coefficients, the α1
variable (DFA), representative of short-term correlations, and T2 and Trans (RQA).

However, for spectral information, while both low frequency information, represented
by FbHRV 1 and 2, and higher frequencies (FbHRV 11 and 15) are considered relevant in
the HuGCDN2014-OXI database, only one variable referring to higher frequencies (FbHRV
21) is included in Physionet. That is why we understand that all the information contained
in these characteristics, especially the cepstral and non-linear information (DFA and RQA),
plays an important role in the classification process and, therefore, in the characterization
of the physiological system underlying sleep apnea.
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Using the SpO2 features yields similar results in both databases. However, as we saw
previously, the number of characteristics selected in the HuGCDN2014-OXI database
is greater than in Physionet. The selected variables always include signal variances
(varSAT1m and varSAT5m) and spectral information: in particular, the very low frequencies
(FbSAT 1 in Physionet, and FbSAT 1 and 2 in HuGCDN2014-OXI), two intermediate bands
(1st band: FbSAT 4 in Physionet, and FbSAT 5 in HuGCDN2014-OXI; 2nd band: FbSAT 12
in Physionet, and FbSAT 9 and 10 in HuGCDN2014-OXI), and a band of higher frequencies
represented by FbSAT 17 in Physionet, as well as FbSAT 17 and 20 in HuGCDN2014-
OXI. Thus, information related to low frequency oscillations, linked to consecutive apneic
episodes, as well as some high frequency components related to short sleep breathing
pauses, seem to be relevant.
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Table 9. Selected features after the feature selection process in Physionet. The order in which they
appear is in agreement with the feature ranking created according to the number of times a certain
feature is selected by the sequential forward feature selection method. The three columns contain the
chosen variables when HRV, SpO2, or HRV + SpO2 features are used.

HRV (7→ 6) SpO2 (6) HRV + SpO2 (12→ 7)

CC1 VarSAT5m VarSAT5m
CC8 VarSAT1m VarSAT1m
T2 FbSAT 17 FbSAT 1

CC4 FbSAT 1 T2
FbHRV 21 FbSAT 4 FbSAT 13

α1 FbSAT 12 FbSAT 16

Trans FbSAT 17

Clust
TT
RT

RTmax
FbSAT 12

Table 10. Selected features after the feature selection process in HUGCDN2014-OXI. The order in
which they appear is in agreement with the feature ranking created according to the number of times
a certain feature is selected by the sequential forward feature selection method. The three columns
contain the chosen variables when HRV, SpO2, or HRV + SpO2 features are used.

HRV (17) SpO2 (15→ 9) HRV + SpO2 (24→ 17)

α1 varSAT1m varSAT1m
CC1 FbSAT 1 Clust
RT FbSAT 10 FbSAT 1

FbHRV 2 FbSAT 20 a 1
Clust FbSAT 9 Trans

T2 FbSAT 2 varSAT5m
α2 FbSAT 17 FbSAT 10
L FbSAT 5 FbSAT 20

DET varSAT5m DET

CC4 FbSAT 19 FbSAT 9
FbHRV 11 FbSAT 12 FbSAT 5

LAM FbSAT 13 T2
Trans FbSAT 7 FbSAT 2
CC17 FbSAT 15 RT

RTmax FbSAT 4 FbHRV 1
FbHRV 1 LAM

FbHRV 15 FbSAT 17

FbSAT 12
TT

Lmax
FbHRV 30

ENTW
FbHRV 23
FbSAT 7

Finally, we analyze the feature set obtained when we merge HRV and SpO2 variables.
The selection of variables that refer to variance (varSAT1m and varSAT5m) in the first
positions is especially noteworthy. Moreover, this selection includes features related to
the spectral content of the oximetric signal, located in the bands referred to previously.
However, RQA measures take on special relevance for variables related to HRV. Specifically,
in Physionet, these include T2, Clust, TT, RT, and RTmax, and in HuGCDN2014-OXI,
they include Clust, Trans, DET, T2, RT, LAM, TT, Lmax, and ENTW. Except for RTmax,
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all those chosen in Physionet are also chosen in HuGCDN2014-OXI. However, cepstrum
coefficients are discarded in both databases. The feature selection algorithm also rules out
the characteristics linked to the spectral content in Physionet, and only three (FbHRV 1, 23,
and 30) occur in HuGCDN2014-OXI, and not in the first positions. Finally, the variable α1
(DFA) is discarded in Physionet, but it is included in HuGCDN2014-OXI and in a privileged
position within the ranking.

We show the values and differences observed in the selected features in apneic and
non-apneic minutes in Table 11 (Physionet) and Table 12 (HuGCDN201-OXI), where the
medians and the interquartile ranges are defined. We applied the Wilcoxon test to compare
statistical significance in the two groups under study. The test was performed using a
level of significance p = 0.05, and values of p < 0.05 were considered significant. The
corresponding p-values are shown in Tables 11 and 12.

3.2. Per-Recording Classification

The aim of this last section is to evaluate the proposed system in OSA diagnosis, with
special emphasis on those patients who do not exhibit clear desaturating behavior during
apneic events. This is especially important given that the ultimate goal of any OSA auto-
matic diagnostic system is to contribute to the search for an alternative to polysomnography.
In this section, we will only refer to the HuGCDN2014-OXI database, as we only have eight
patients in Physionet and, furthermore, it does not distinguish between desaturators and
non-desaturators.

We carry out a per-recording classification according to the AHI estimation (automatic
AHI). As we highlighted in our introduction, we estimate the AHI for a subject by calculat-
ing the average number of apneic minutes per hour, i.e., adding the total number of apneic
minutes, dividing this value by the total number of minutes in the corresponding register,
and multiplying the result by 60 [25].

Table 11. Statistical description (median and interquartile ranges) of the features according to the
presence or absence of apneic minutes in the Physionet database. We applied the Wilcoxon test to
compare statistical significance in the two groups under study. The test was performed using a level
of significance p = 0.05, and values of p < 0.05 were considered significant.

Features Median (Non−Apneic) Median (Apneic) p

FbHRV 21 −5.66 (−6.35; −4.99) −6.06 (−6.57; −5.61) <0.0001
CC 1 −0.90 (−1.52; −0.45) −0.55 (−1.30; −0.26) <0.001
CC 4 −0.01 (−0.05; 0.04) 0.14 (0.08; 0.19) <0.0001
CC 8 −0.07 (−0.11; −0.02) −0.04 (−0.07; −0.02) <0.0001
α1 1.04 (0.83; 1.31) 1.73 (1.55; 1.83) <0.0001
TT 2.35 (2.16; 2.76) 2.90 (2.64; 3.27) <0.0001
T2 23.34 (21.35; 25.96) 34.54 (31.52; 37.81) <0.0001
Trans 0.26 (0.23; 0.30) 0.40 (0.37; 0.43) <0.0001
RT 23.21 (20.86; 26.74) 37.71 (33.71; 42.30) <0.0001
RTmax 174 (143; 213) 186 (154; 230) <0.001
Clust 0.28 (0.25; 0.32) 0.43 (0.40; 0.46) <0.0001
FbSAT 1 −8.8·10−3 (−1.21·10−2; −5.9·10−3) −9.48·10−4 (−1.2·10−3;−7.31·10−4) <0.0001
FbSAT 2 −5.38 (−5.78; −5.06) −7.72 (−7.99; −7.45) <0.0001
FbSAT 4 −7.17 (−7.55; −6.87) −9.16 (−9.41; −8.91) <0.0001
FbSAT 12 −9.46 (−9.86; −9.16) −11.38 (−11.65; −11.16) <0.0001
FbSAT 13 −9.60 (−9.99; −9.28) −11.63 (−11.89; −11.39) <0.0001
FbSAT 16 −9.97 (−10.37; −9.66) −12.21 (−12.52; −11.93) <0.0001
FbSAT 17 −10.48 (−10.85; −10.16) −12.00 (−12.23; −11.79) <0.0001
varSAT1m 0.21 (0.13; 0.39) 3.58 (3.08; 3.97) <0.0001
varSAT5m 0.28 (0.20; 0.48) 3.71 (3.41; 4.03) <0.0001
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Table 12. Statistical description (median and interquartile ranges) of the features according to the
presence or absence of apneic minutes in the HUGCDN2014-OXI database. We applied the Wilcoxon
test to compare statistical significance in the two groups under study. The test was performed using a
level of significance p = 0.05, and values of p < 0.05 were considered significant.

Features Median (Non−Apneic) Median (Apneic) p

FbHRV 1 −1.53 (−2.27; −0.92) −1.77 (−2.33; −1.19) <0.05
FbHRV 2 −1.93 (−2.42; −1.52) −1.36 (−1.75; −1.06) <0.0001
FbHRV 11 −5.08 (−5.72; −4.45) −5.30 (−5.86; −4.80) <0.01
FbHRV 15 −5.26 (−6.05; −4.32) −5.59 (−6.31; −4.78) <0.001
FbHRV 23 −5.90 (−6.72; −4.96) −6.04 (−6.73; −5.32) NS
FbHRV 30 −6.43 (−7.19; −5.59) −6.60 (−7.34; −5.74) NS
CC 1 −1.36 (−1.78; −0.98) −1.06 (−1.52; −0.80) <0.0001
CC 4 0.06 (−0.02; 0.15) 0.10 (0.02; 0.18) <0.001
CC 17 −0.06 (−0.08; −0.03) −0.07 (−0.09; −0.04) <0.05
α1 1.17 (0.94; 1.39) 1.49 (1.32; 1.64) <0.0001
α2 0.72 (0.50; 0.98) 0.53 (0.36; 0.77) <0.0001
DET 0.53 (0.37; 0.67) 0.64 (0.54; 0.75) <0.0001
L 3.08 (2.56; 3.75) 3.55 (3.03; 4.50) <0.0001
Lmax 58 (24; 117) 91 (53; 163) <0.0001
LAM 0.53 (0.31; 0.69) 0.69 (0.58; 0.78) <0.0001
TT 2.54 (2.21; 2.92) 2.82 (2.61; 3.13) <0.0001
T2 22.55 (19.41; 26.64) 28.93 (24.50; 33.27) <0.0001
Trans 0.27 (0.23; 0.31) 0.33 (0.28; 0.38) <0.0001
RT 22.88 (18.91; 28.78) 31.37 (25.84; 37.79) <0.0001
RTmax 188 (156; 224) 197 (169; 227) <0.001
ENTW 3.52 (3.26; 3.76) 3.61 (3.39; 3.82) <0.001
Clust 0.29 (0.25; 0.34) 0.36 (0.30; 0.41) <0.0001
FbSAT 1 −5.8·10−3 (−8·10−3; −4·10−3) −5.6·10−3 (−7.1·10−3; −4.4·10−3) NS
FbSAT 2 −5.77 (−6.14; −5.44) −5.82 (−6.07; −5.57) <0.05
FbSAT 4 −7.60 (−7.95;−7.28 −7.59 (−7.84; −7.36) NS
FbSAT 5 −8.12 (−8.48; −7.81) −8.13 (−8.38; −7.90) NS
FbSAT 7 −8.87 (−9.24; −8.55) −8.91 (−9.16; −8.67) NS
FbSAT 9 −9.46 (−9.81; −9.15) −9.48 (−9.71; −9.24) NS
FbSAT 10 −9.69 (−10.05; −9.37) −9.72 (−9.97; −9.48) NS
FbSAT 12 −10.11 (−10.47; −9.80) −10.11 (−10.36; −9.87) NS
FbSAT 13 −10.31 (−10.67; −10.01) −10.32 (−10.55; −10.09) NS
FbSAT 15 −10.59 (−10.96; −10.27) −10.63 (−10.88; −10.38) NS
FbSAT 17 −10.83 (−11.20; −10.49) −10.83 (−11.09; −10.59) NS
FbSAT 19 −10.95 (−11.34; −10.60) −10.99 (−11.27; −10.74) NS
FbSAT 20 −10.99 (−11.39; −10.64) −11.02 (−11.30; −10.76) NS
varSAT1m 0.20 (0.08; 0.39) 1.97 (1.28; 2.87) <0.0001
varSAT5m 0.30 (0.18; 0.62) 2.13 (1.47; 2.93) <0.0001

Figure 6 shows automatic versus manual AHI (obtained manually by qualified staff)
depending on the characteristics (HRV, SpO2, HRV, and SpO2). The different colors repre-
sent the control subjects (green), the desaturators (red), and the non-desaturators (blue).
There is no defined criterion for the AHI value to discriminate between healthy and patho-
logical subjects [44], so there are three horizontal lines in each graph representing AHI
values commonly used in the OSA diagnosis—5, 10, or 15 [41,57]—thus calculating the
results according to the AHI value. We perform the per-recording classification analysis
graphically, as it is a good way to assess how our system’s regression line fits the function
y = x.

Figure 6 shows that, using only HRV features, the limit for the AHI value should be
set at 15. In that case, 4 healthy subjects (out of 19) and 3 pathological subjects (out of
28, 17 desaturators and 11 non-desaturators) would be incorrectly classified. Of the three
pathological subjects, two are desaturators, and one is a non-desaturator. However, using
only oximetric variables leads to a high specificity in the classification of control patients
and a high sensitivity in the detection of desaturating patients. This means that, regardless
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of the AHI value (5, 10, or 15), all these subjects (control and desaturating patients) are
well-classified. Nevertheless, of the 11 non-desaturating patients, and depending on the
AHI limit, 2 for AHI = 5, 4 for AHI = 10, and 7 for AHI = 15 would be incorrectly classified.
Finally, when we merge HRV and SpO2 features, sensitivity improves when classifying
non-desaturating patients, and specificity worsens slightly. In this case, by setting the AHI
limit at 5, almost all subjects would be well classified, although 3 subjects (2 control and
1 non-desaturator) would be at the limit. Accuracies, sensitivities, and specificities are
shown in Table 13.
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Figure 6. Automatic versus manual AHI (obtained manually by qualified staff) depending on the
feature type (HRV, SpO2, HRV, and SpO2) in test patients (T3). The different colors represent the
control patients (green), the desaturators (red), and the non-desaturators (blue). Horizontal lines
represent AHI values commonly used in the OSA diagnosis: 5, 10 or 15.

Table 13. Per-recording performance (test results) in HUGCDN2014-OXI (control subjects, desaturat-
ing, and non-desaturating patients), depending on the features and on the AHI limit. These results
represent a real system, tested with healthy subjects and OSA diagnosed patients (desaturating and
non-desaturating). For the main parameters (classification rate and sensitivity), we obtain the best
results by combining both feature types (highlighted in gray).

Features AHI Limit ACC SENS SPEC

HRV

5 63.83 100 10.53

10 76.60 96.43 47.37

15 85.11 89.29 78.95

SpO2

5 95.74 92.86 100

10 91.49 85.71 100

15 85.11 75 100

HRV and SpO2

5 95.74 100 89.47
10 93.62 89.29 100

15 87.23 78.57 100
ACC: classification rate (accuracy), SENS: sensitivity, SPEC: specificity.

The regression study presented in the previous paragraphs is good to assess the agree-
ment and relationship between manual (AHIm) and automatic (AHIa) AHI estimations.
We now go a step further by performing a statistical analysis of the errors of the automatic
method compared to the manual method. For this purpose, the quantification of the agree-
ment between the two quantitative AHI measurements plays an important role by studying
the mean difference and constructing limits of agreement. We are interested in evaluating
the bias, which is calculated from the mean error, and estimating an agreement interval,
within which fall 95% of the errors. Bland and Altman (B&A) introduced a plot to describe
the agreement between two quantitative measurements [115,116]. The resulting graph
is a scatter plot, in which the vertical axis shows the difference between the two-paired



Sensors 2023, 23, 4267 21 of 34

measurements (AHIa − AHIm), and the horizontal axis represents the average of these
measures, estimated as (AHIa + AHIm)/2.

We can summarize the agreement by calculating the bias, estimated by the mean
error (d) and the standard deviation (sd). Assuming normality, we can expect 95% of the
errors to lie in the confidence interval (CI) defined by d ± sd. A bias is not statistically
significant if the line of equality (zero error) lies inside the CI, thus indicating that there
is not a significant systematic error. For example, the automatic method does not show a
significant constant under/overestimation compared to the automatic one. We may wonder
about whether the agreement interval is sufficiently narrow. It depends on analytical and
clinical goals. For our purposes, correct classification must be as high as possible. It is
also important to understand the significance of confidences around the mean error and
agreement limits, as these CI describe possible errors in the estimates due to deficiencies in
the sampling. In general, the greater the number of samples used to evaluate the quality,
the narrower the CI.

In Figure 7, we show the Bland–Altman plots for the automatic versus manual AHI
in test patients, depending on the features, with the representation of confidence interval
limits (95%) for the mean and agreement limits. The bias, standard deviation (Std), and
95% CI limits of Figure 7 are shown in Table 14.
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Table 14. Bias, standard deviation (Std), and 95% CI limits of Figure 7.

Features Bias Std CI

HRV −6.2489 9.7682 [−25.3942, 12.8965]

SpO2 −2.2865 7.3125 [−16.6188, 12.0458]

HRV & SpO2 −2.6295 6.5822 [−15.5304, 10.2714]

An inspection of the plots let us see some interesting characteristics of the classifiers.
In all cases, control patients are grouped in small clusters, and they are well differentiated
from desaturating and non-desaturating patients, which are scattered in wider areas. For
HRV features, non-control patients are scattered in such a way that it is difficult to find
differences among them. On the contrary, for SpO2, HRV, and SpO2 features, the differences
are quite evident. Particularly, AHI for desaturating patients are underestimated, while for
non-desaturating, the main tendency is to be overestimated. The confidences around the
mean error and agreement limits are quite narrow. We must highlight that, for HRV and
SpO2 features, we get the narrowest CI.

Regarding the bias, we can see that, in all cases, the value is not zero, thus indicating
certain lack of agreement. These biases are not significant because the lines of equality are
within the confidence intervals of the mean errors. For SpO2, as well as HRV&SpO2 features,
the biases are very small, and the patients incorrectly classified for AHI limit = 5 are 3. For
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HRV features, the bias is higher than for the other 2, and a value of−6.2489 compromises the
classification of patients more than for the other features (7 patients incorrectly classified).

4. Discussion

This is a novel study that thoroughly analyzes the detection of sleep apnea events
(quantification) and the diagnosis of OSA patients (per-recording classification), but it
focuses on the system performance when the database includes patients who do not always
show desaturations during apneic episodes (non-desaturating patients). In this context, this
work aims to quantify the system improvement by combining information extracted from
different signals (HRV and SpO2), mainly, in non-desaturating patients. The HRV features
include spectral (Filterbank), cepstral, and nonlinear information (DFA and RQA), whereas
SpO2 features consider temporal (1 min and 5 min variance) and spectral (Filterbank)
information.

The main contributions to the state of the art research are threefold. On the one hand,
and for the first time in the literature, we evaluate how non-desaturating patients affect the
performance of an automatic apnea detection system. This is particularly important given
that, at present, there is no overall accepted alternative system to polysomnography that is
simple, automatic, and requires fewer signals. This is due, among other things, to the lack
of studies in the literature dealing with OSA patients with other concomitant pathologies.
Very few studies have assessed OSA in patients who also suffered from COPD [54,117,118].
The most recent study, carried out by Andrés-Blanco et al. [54], was meant to assess the
influence of COPD on an automatic OSA detection system’s performance using the oximeter
signal in the patient’s home. For this, they compared the results from polysomnography in
the hospital with those obtained at the patient’s home. The study distinguished between
OSA patients with and without COPD. However, regarding COPD, it is important to
highlight that, within the AASM recommendations [5], OSA analysis with portable systems
in patients with COPD is, in principle, not recommended.

On the other hand, it is important to highlight that, unlike other works in the literature
that only focus on OSA diagnosis [36,40–42,47,49,50,64], we perform real-time detection of
apneic events, which allows us to use the system in the context of OSA treatment [53].

Finally, the detection of the most representative features of the underlying system
when using HRV or SpO2 features alone, or when combined, allows us to deepen the
characterization of the physiological system associated with OSA.

4.1. Evaluation of HRV and SpO2 Signals in Apnea Detection and OSA Diagnosis

The objective of this section is to unify the conclusions reached in Sections 3.1 and 3.2,
which are devoted to per-segment (apneic/non-apneic minute) and per-recording (con-
trol patient/desaturating patient/non-desaturating patient) classification, respectively, to
define the proposed system.

After analyzing Table 6 (results of minute-by-minute classification in desaturating pa-
tients in HuGCDN2014-OXI), we considered that using SpO2 variables was the best option
to reach high success rates and sensitivities with the lowest number of variables (15). How-
ever, given that the subjects under analysis can be both desaturators and non-desaturators,
the sensitivities observed in Table 7 (results of minute-by-minute classification in non-
desaturating patients in HuGCDN2014-OXI) would lean against exclusively employing
SpO2 features. Thus, we propose combining HRV and SpO2 variables as the best option.
This would improve sensitivities in non-desaturating patients significantly. Moreover, the
error rates and sensitivities of desaturating patients would not worsen because the results
with SpO2, as well as HRV and SpO2, features are very similar. However, this decision
would, to a certain extent, harm non-desaturating patients, as exclusively using HRV
variables yields better sensitivities. Nonetheless, desaturating patients are more common
in general.

On the other hand, if the system could include only one signal, a method which best
harmonizes sensitivities in both desaturators and non-desaturators, then that would be
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the electrocardiographic signal. In this case, classification rates would be worse. However,
using only the oximeter signal would result in sensitivities that were too small in non-
desaturating patients.

Concerning the per-recording classification, if only one signal is available, we would
also choose the HRV signal and set the AHI limit at 15, thus better balancing sensitivity
and specificity (see Figure 6). Using only the SpO2 signal would result in sensitivities
being too low in non-desaturating patients. However, we must point out that, whenever
the system includes features extracted from SpO2 (SpO2, as well as HRV and SpO2), the
resulting specificity values are high (see Figure 6). The latter had already been referred
to by other authors when evaluating the results from classic oximetric indices (ODIs and
CTs). They produce, in general, high specificities but low sensitivities [32]. On the other
hand, if including two signals were possible, combining HRV and SpO2 signals would be
recommended along with using an AHI limit of 5. These conditions would give the best
results, which would be close to 100%, for the per-recording classification rate regardless of
the type of subject considered (control, desaturator, and non-desaturator) and, especially,
the sensitivity in the classification of non-desaturating patients would improve.

In the literature, there are several works that compare the ECG signal with the SpO2
signal performance [60], and others analyze the advantages of combining them [57]. How-
ever, none differentiate patients who are not desaturators. Xie and Minn [60] concluded
that SpO2 features obtained better results than ECG features in terms of their diagnostic
capability. Based on our results (see Figure 6), we can suggest that this statement is entirely
valid for all those patients with a clear desaturation pattern during apneas, but it is not
applicable to non-desaturating patients. Regarding the combination of HRV and SpO2
variables, these same authors highlighted how convenient information contained in the
HRV is a complement to the oximeter information in the OSA diagnosis. Although they
focused on the study of the oximetric signal, Hang et al. [52] concluded that including HRV
features could boost OSA diagnosis system performance.

Given the recent technological developments in wearable and portable systems, pulse
oximeters and ECG monitors that employ Bluetooth [86,119–121] are now available, which
allow data to be transmitted in real-time to a computer, smartphone, or tablet for analysis.
This leads us to consider that a system that includes both signals can be easily and com-
fortably implemented for the patient, who would undergo the diagnostic test at home via
a completely wireless system. In the state of the art research, there are some examples of
physiological signal recording systems that send information to a smartphone, highlighting
the proposed system’s viability [122].

4.2. Selected Features

Of the features selected when the system includes HRV variables exclusively, we can
conclude that most of those selected in Physionet are also selected in HuGCDN2014-OXI. Ana-
lyzing the features chosen in each case, we can see that combining different characteristics—in
this case, cepstral, spectral, and non-linear (RQA and DFA) characteristics—offers the most
benefits, as they provide complementary information on the phenomena that occur during
apneic events. These results suggest that, in addition to cepstral and frequency information,
short-term correlations and recurrences in the signal play an important role in the classifica-
tion process. In particular, the first cepstrum coefficient and α1 (DFA) are selected in both
databases, as they are in our previous work [22]. However, by including RQA measures, the
spectral information of the HRV becomes less relevant. Regarding the RQA measures, the
selection algorithm emphasizes the importance of information on recurrence times (T2) and
on the degree of local grouping (Trans and Clust). These measures already stood out in one
of our previous studies [87], in which the HRV analysis included exclusively RQA measures.

When the system only considers the SpO2 features, the selection (see Tables 9 and 10)
always contains the 1 min and 5 min variance at relevant ranking positions, regardless
of the database. Moreover, it also includes many variables corresponding to the spectral
information (filter bank outputs). These results differ, to some extent, from those obtained
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by Ravelo et al. [61], in which the selection algorithm ruled out the 5 min variance. Several
studies in the literature show, as does the present work, that basic temporal statistical anal-
yses yield good results with very low computational costs [34,35,45,63,85]. However, some
systems that use spectral analysis of oximetric signals obtain good results [30,34,40,45].

Finally, the SpO2 features stand out in the selection when combining HRV and SpO2
variables. As seen in the previous analysis, the selected set includes the two variances
(1 min and 5 min), as in the study carried out by Ravelo et al. [61]. Regarding the HRV
variables, the feature selection algorithm rules out cepstrum coefficients and almost all
variables related to its spectral content. The DFA variable, α1, remains in the HuGCDN2014-
OXI database. However, almost all RQA measures, selected when working only with HRV,
are included. These results suggest that, once the system includes the oximeter signal,
information related to recurrences in the HRV, contained in the RQA measures, plays a very
important role in the classification process, unlike the spectral and cepstral information
of the HRV. Especially relevant are variables related to the diagonal structures of the RPs
(DET), to the vertical structures (LAM and TT), to recurrence times (RT, T2, RTmax, and
ENTW), and to the degree of local grouping (Clust and Trans). These features coincide, to
a large extent, with those found in one of our previous studies [87], when using the FAN
Method: Clust, LAM, RTmax, T1, and DET.

The set of features obtained by combining the HRV and SpO2 signals shows how
important oximetric variables are compared with those extracted from the HRV, which
is consistent with conclusions reached by other authors [60,61]. This is mainly because
SpO2 is directly linked to the amount of oxygen entering the lungs during inhalation.
Hence, an apneic event will result, mostly, in oxygen saturation variation due to airflow
interruption. However, the HRV, obtained from the ECG signal, not only reflects the
phenomena associated with OSA but can manifest many other concomitant disorders. That
being said, according to the arguments presented above, we must highlight the importance
of HRV variables, especially in non-desaturating patients.

4.3. Desaturation in the Presence of Apneas

In the automatic detection of apneic episodes, especially when based on the SpO2
signal, there are several factors that can cause significant differences between AHI and
ODI, which are common in patients who we have defined as non-desaturators. These
include the following: (1) limitations of pulse oximeters [49], whose accuracy may be
conditioned by factors such as skin pigmentation, blood flow in the evaluation area, SpO2
values below 80%, artifacts, or disconnections due to patient movement, etc. This is
especially important in OSA-diagnosed patients, whose peripheral blood perfusion is
often limited; (2) hypopneas, which imply a decrease in airflow, are factored into AHI
calculations. The main problem is that marked desaturation is not always present during
a hypopnea. In this regard, we must point out that neither of the two databases used for
the experiments distinguish between apneas and hypopneas; (3) short duration apneas
that do not cause desaturations; (4) upper airway resistance syndrome, in which the
patient does not show apneas or desaturations but, rather, repetitive arousals due to a
progressive increase in intrapleural pressure, increased work of breathing, and daytime
drowsiness. In the past, this disorder was not considered sleep apnea; however, the
latest AASM recommendations suggest including it within this group of pathology [55,123];
(5) displacements of the hemoglobin dissociation curve due to a variation in partial pressure
of carbon dioxide (pCO2), temperature, pH, or 2–3 diphosphoglycerate (2–3 DPG), among
others. Repeated apneic events usually lead to recurrent hypoxias (SpO2 values lower than
90%) and hypercapnias (abnormal increase in carbon dioxide (CO2)) in arterial blood. The
pH decreases as the concentration of CO2 increases. Moreover, hypoxias lead to a rise in
2–3 DPG, which binds to hemoglobin, thus reducing hemoglobin oxygen affinity. It is also
important to note that how these factors affect the curve displacement is specific to each
person. This would explain the different responses observed in patients due to airway
obstructions of the same duration. All these circumstances contribute to a rightward shift
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of the hemoglobin dissociation curve, a sign of hemoglobin’s decreased affinity for oxygen
that favors the release of oxygen in the tissues.

On the other hand, there are also changes in the structure and amount of blood
hemoglobin that can lead to particularly high (such as in methemoglobinemia or carboxy-
hemoglobinemia) or low (such as in anemia) oximetry readings that are not related to
respiratory disturbances [55]. Another relevant factor is obesity, as oximeter data in this
type of patient are not reliable for OSA diagnosis [55,124].

Last, a final observation on chemoreceptors and baroreceptors in OSA patients. Carl-
son et al. [125] found out that OSA patients show arterial baroreceptor reflex attenuation or
inhibition, due to chemoreceptors stimulation. In the same context, Narkiewicz et al. [126]
studied chemoreceptor sensitivity and set out that it is increased in OSA patients. Desatu-
ration, accompanied by hypercapnia, stimulates ventilation because of chemoreceptors, so
rapid increases in ventilation lead to resaturation and a decrease in the duration of apneas
and hypopneas.

All these factors reinforce how important it is to avoid basing OSA diagnosis exclu-
sively on the SpO2 signal. Furthermore, with this work, we open the door to the possibility
that, in the future, respiratory events can be studied thoroughly by attending, for exam-
ple, to their duration. It is possible that the effects on sleep quality and, in general, on
patients’ quality of life depend on the duration of the respiratory events since, in short ones,
desaturations may not occur.

4.4. Limitations of the Proposed Method

Despite its contributions, we must draw attention to some limitations present in the
study. To a large extent, these limitations are related to the databases employed. In the
widely used Physionet database, there are only eight patients with all the signals involved in
this analysis—ECG and SpO2. Including them allows us to compare our results with other
works in the literature, although conclusions drawn from such a small database are limited.
In any case, it is necessary to bear in mind that, as our main objective is to evaluate the
system considering non-desaturating patients, our most important conclusions came from
the HuGCDN2014-OXI database, whose main limitation is that it only accounts for control
subjects and patients with severe OSA. We should also mention that neither database
includes subjects with significant concomitant disorders, such as cardiorespiratory diseases.
Additional studies with this type of patient would be necessary to give our conclusions a
more generalizable character. All these circumstances are especially relevant considering
that HRV, in the context of apnea, may be conditioned by the integrity of sympathetic and
parasympathetic stimuli, so associated pathologies, such as diabetes mellitus or chronic
heart failure, could cause a limited response of the autonomic system and, therefore, a
decrease in HRV [127–129]. Moreover, there are also some studies suggesting that the
autonomic nervous system activity is age-dependent, which could lead to a decrease
in HRV in healthy subjects [127,130–132]. The latter led Zamarrón et al. to think that
combining HRV and SpO2 signals was especially important in elderly patients. On the
other hand, Gutiérrez-Tobal et al. [27] studied the potential gender differences in HRV sleep
apnea information. The conclusions of these works could suggest that assessing automatic
systems for OSA diagnosis should differentiate pathologies, age, and sex of the subjects
under study.

We must bear in mind that most state of the art research aimed at diagnosing OSA or
apneic events from HRV uses public databases. However, those that also include oximetry
usually rely on their own databases, making it difficult to compare the different systems. In
our opinion, more efforts should be made to create a database to replace the widely used
Physionet. The new database should include ECG signals, SpO2 signals, and a sufficiently
high number of subjects to allow the study of special interest groups. In this sense, it
would be useful to include a greater range of ages, a greater number of women, subjects
of different races, and patients with different diseases that may affect OSA diagnosis,
especially pulmonary and cardiac diseases. This would also allow results from different
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systems to be compared. As a result, widely contrasted solutions could be reached to create
a universal automatic system that is acceptable to the medical community.

Finally, we must point out that our proposal is intended to be a portable or wearable
system. However, the signals used in the analysis were collected in a controlled hospital en-
vironment. Therefore, we should evaluate its performance in an unsupervised environment
to validate the conclusions obtained.

4.5. Comparison with Prior Work

As already discussed in Section 1.2, in the state of the art research, there are many
studies that use the oximeter signal or the combination of HRV and SpO2 signals for
OSA diagnosis. The problem when comparing our results with those reached in previous
studies is the use, in most cases, of diverse private databases: the proportion of control
subjects versus patients in the different OSA grades, concomitant diseases, desaturating
characteristics, age, and physical attributes of the subjects under study, etc. These aspects
are particularly relevant as obesity or the presence of COPD can increase the number of
false positives [80].

However, general conclusions can be drawn depending on the type of features used in
each case. The classical oximetric indices (delta index, ODIs, and CTs) show certain limita-
tions that have been exposed in previous studies [36,45]. Of such limitations, one is records
analysis, which can only be carried out offline. This allows overall classification of the
subjects as pathological or non-pathological, but it is impossible to analyze apneic events
in real time. Several authors have reported difficulty in performing an overall analysis in
real time, i.e., obtaining screening results in a few minutes. Fortunately, the computational
power of modern servers allows this task to be approached without appreciable delay. As
mentioned in 4.1, recent technological developments in wearable and portable systems are
now available, which allow data to be transmitted in real-time to a computer, smartphone
or tablet for analysis. Additionally, there are examples of physiological signal recording
systems that send information to a smartphone, highlighting the proposed system’s viabil-
ity. The sensitivities and specificities obtained vary greatly between the different studies
(sensitivities between 30% and 98%, and specificities between 41% and 100% [50]), and
the correlation between AHI and the oximetric indices is low [46]. Moreover, the results
are generally worse than those obtained when other features are introduced, including
temporal and frequency statistics, spectral analysis, and nonlinear analysis [42,45,48,85].
For meaningful comparison, we focus on the studies that use Physionet, especially those
that include only the eight patients with both signals (ECG and SpO2). Table 15 shows the
results obtained for per-segment classification because the small number of patients does
not allow, in general, an adequate analysis of per-recording classification. Lee et al. [37]
introduced the wavelet transform with an accuracy of 96.55%, sensitivity of 95.74%, and
specificity of 97.02% by defining a threshold for each patient’s own wavelet coefficients,
which is not feasible in clinical practice. Therefore, the reference values for this study would
be those shown in the second row and obtained with a global threshold (Acc: 82.70%; Sens:
78.99%; Spe: 84.82%). Burgos et al. [43] used a modified version of the classical oximetric
indices to adapt them to a segmental study (Acc: 93.03%; Sens: 92.35%; Spe: 93.52%). The
two authors referred to so far only made use of the SpO2 signal. Shi et al. [59] performed a
comparative study dependent on the type of signal used, extracting time and frequency
features of each signal. Wang et al. [133] used a residual network with HRV that was
94.39% accurate. With a self-configuring classifier combination, Mostafa et al. [134] reached
an accuracy, sensitivity and specificity of 91.33%, 98.11%, and 86.98%. Mostafa et al. [83]
reached an accuracy, sensitivity, and specificity of 94.24%, 92.04%, and 95.78% using a con-
volutional neural network with multi-objective hyperparameter optimization. In another
study, Mostafa et al. [82] reached an accuracy, sensitivity, and specificity of 95.14%, 92.36%,
and 97.08%, respectively, with a greedy based convolutional Neural Network. Bernardini
et al. [135] proposed a convolutional deep learning architecture to reduce the temporal
resolution of raw waveform data and reached an accuracy, sensitivity, and specificity of
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93.60%, 91.20%, and 95.10%. Finally, Sharma et al. [136] decomposed the SpO2 signals
into various sub-bands (SBs) and extracted Shannon entropy features (Acc.: 95.97%; Sens.:
95.78% and Spe.: 96.09%).

Comparing the results from our study for the Physionet database with those reached
in other works, we can conclude that, both for the cases in which the HRV and SpO2 signals
are used individually and those where they are used jointly, our proposal shows interesting
and competitive results that emphasize the physical information obtained from the features,
along with a simpler classification method.

Although the HuGCDN2014-OXI database is not exactly the same as the one used by
Ravelo-García et al. [61], Mostafa et al. [82,83,134], and Mendoça et al. [137], the data were
collected in the same sleep laboratory, which is why we consider it appropriate to compare
the results obtained with both datasets in Table 16. Ravelo et al. [61] obtained the following
results by combining SpO2 and ECG (Acc: 86.9%; Sens: 73.4%; Spe: 92.3%). Mostafa
et al. [134] reached an accuracy, sensitivity and specificity of 85.30%, 82.48% and 86.28%
respectively. Mendonça et al. [137] obtained an accuracy, sensitivity, specificity, and AUC
of 88%, 80%, 91%, and 0.86, respectively. Mostafa et al. [83] reached an accuracy, sensitivity,
and specificity of 89.32%, 74.75%, and 94.44%, respectively. Finally, Mostafa et al. [82]
reached an accuracy, sensitivity and specificity of 88.49%, 73.64%, and 93.80%, respectively.
In our proposal, sensitivities are notably better and well-balanced with specificities. In
return, we obtained lower specificities, all of which are greater than 76.90%. Bearing
in mind that this is a medical diagnostic system, we consider the increased sensitivity
especially relevant, especially as we also include a high proportion of non-desaturating
patients, which further complicates the per-segment classification.

In summary, we consider our results very promising. Nevertheless, there is still
margin to improve the global system performance, e.g., increasing the number of features,
specifically by adding new non-linear characteristics to both signals that will allow us to
obtain additional complementary information; applying other pattern recognition methods
as those based on deep learning [138], ANN, k-NN, SVM or decision tree classifiers;
assessing other feature selection techniques.

Table 15. Comparison of the per-segment classification results obtained in Physionet.

Works Year Signals AUC Acc (%) Sens (%) Spe (%)

[37] 2004 SpO2
96.55
82.70

95.74
78.99

97.02
84.82

[43] 2010 SpO2 0.985 93.03 92.35 93.52

[59] 2011 SpO2
ECG

94
89.97

94
87.69

94
91.18

[133] 2019 ECG 94.39 93.04 94.95

[134] 2019 SpO2 91.33 98.11 86.98

[83] 2020 SpO2 92.24 92.04 95.78

[82] 2020 SpO2 95.14 92.36 97.08

[135] 2021 ECG 93.60 91.20 95.10

[136] 2022 SpO2 0.98 95.97 95.78 96.09

Our proposal
SpO2 0.986 95.76 95.37 94.51
ECG 0.983 92.71 92.38 93.3

SpO2 + ECG 0.990 96.19 95.74 95.25
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Table 16. Comparison of the per-segment classification results obtained in two databases collected in
the Hospital Universitario de Gran Canaria Dr. Negrín.

Works Dataset Year Signals AUC Acc (%) Sens (%) Spe (%)

[61] HuGCDN2008 2015
SpO2
ECG

SpO2 + ECG

0.898
0.809
0.919

86.5
79.4
86.9

75.6
42.4
73.4

91
94.3
92.3

[134] HuGCDN2008 2019 SpO2 - 85.3 82.48 86.28
[137] HuGCDN2008 2020 SpO2 0.86 88 80 91
[83] HuGCDN2008 2020 SpO2 89.32 74.75 94.44
[82] HuGCDN2008 2020 SpO2 88.49 73.64 93.80

Our proposal HuGCDN2014-OXI
SpO2
ECG

SpO2 + ECG

0.926
0.854
0.934

86.78
77.22
87.32

81.68
78.13
83.81

88.56
76.90
88.55

5. Conclusions

To the best of our knowledge, this is the first study in the context of OSA that is
focused on quantitative analysis of results from patients under study who do not show
a clear desaturating pattern during apneic events. For this purpose, we have evaluated
the use of features extracted from the HRV and SpO2 signals, individually and jointly, in
different sets of patients according to their desaturating patterns.

We concluded that the best option, both for the detection of apneic events and for the
global diagnosis of OSA patients, is to combine both signals, especially when the subjects
under study include patients with a non-desaturating pattern. In that case, we found,
for the detection of apneic events in Physionet, a success rate of 96.19%, sensitivity of
95.74%, and specificity of 95.25% (AUC: 0.99) and in HuGCDN2014-OXI, we found rates of
87.32%, 83.81%, and 88.55% (AUC: 0.934), respectively. The results for the global diagnosis
of OSA patients (HuGCDN2014-OXI) were: success rate of 95.74%, sensitivity of 100%,
and specificity of 89.47%. The AHI limit, in this case, would be set at 5. However, if only
one signal is available, we would suggest using the HRV, as otherwise, the sensitivity for
non-desaturating patients would be very low. For this option, we found the following
results in Physionet: a 92.71% success rate, 92.38% sensitivity, and 93.3% specificity (AUC:
0.983); in HuGCDN2014-OXI: 77.22%, 78.13%, and 76.9% (AUC: 0.854), respectively. For
this case, we suggest 15 as an AHI limit.

Regarding the features, we can highlight two cases. If both HRV and SpO2 signals are
included, results suggest that we should include, of the SpO2 signal, both 1 min and 5 min
variances, some variables related to the spectral information, and, of the HRV, the RQA
measures and the α1 variable (DFA). However, if we only used the HRV signal, it would be
useful to add cepstrum coefficients and spectral information.

In summary, we can conclude that the proposed system diagnoses OSA well, especially
when using both HRV and SpO2 signals. Given recent technological breakthroughs in
portable and wearable systems, both signals could be recorded wirelessly in patients’
homes, thus avoiding the drawbacks of using polysomnography. Moreover, real-time
detection of apneic events would allow for improved treatment, as steps could be taken
during apneic episodes to restore normal breathing [51]. Given the important consequences
of OSA for patients’ long-term health, this would reduce mortality rates associated with
this pathology.
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