Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/122161
Title: Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients
Authors: Martín González, Sofía Isabel 
Ravelo García, Antonio Gabriel 
Navarro Mesa, Juan Luis 
Hernández Pérez, Eduardo 
UNESCO Clasification: 3314 Tecnología médica
Keywords: Apnea detection
Cepstrum coefficients
Detrended fluctuation analysis
Heart rate variability
Issue Date: 2023
Journal: Sensors (Switzerland) 
Abstract: In this paper, we thoroughly analyze the detection of sleep apnea events in the context of Obstructive Sleep Apnea (OSA), which is considered a public health problem because of its high prevalence and serious health implications. We especially evaluate patients who do not always show desaturations during apneic episodes (non-desaturating patients). For this purpose, we use a database (HuGCDN2014-OXI) that includes desaturating and non-desaturating patients, and we use the widely used Physionet Apnea Dataset for a meaningful comparison with prior work. Our system combines features extracted from the Heart-Rate Variability (HRV) and SpO2, and it explores their potential to characterize desaturating and non-desaturating events. The HRV-based features include spectral, cepstral, and nonlinear information (Detrended Fluctuation Analysis (DFA) and Recurrence Quantification Analysis (RQA)). SpO2-based features include temporal (variance) and spectral information. The features feed a Linear Discriminant Analysis (LDA) classifier. The goal is to evaluate the effect of using these features either individually or in combination, especially in non-desaturating patients. The main results for the detection of apneic events are: (a) Physionet success rate of 96.19%, sensitivity of 95.74% and specificity of 95.25% (Area Under Curve (AUC): 0.99); (b) HuGCDN2014-OXI of 87.32%, 83.81% and 88.55% (AUC: 0.934), respectively. The best results for the global diagnosis of OSA patients (HuGCDN2014-OXI) are: success rate of 95.74%, sensitivity of 100%, and specificity of 89.47%. We conclude that combining both features is the most accurate option, especially when there are non-desaturating patterns among the recordings under study.
URI: http://hdl.handle.net/10553/122161
ISSN: 1424-8220
DOI: 10.3390/s23094267
Source: Sensors (Switzerland) [ISSN 1424-8220], v. 23 (9), 4267, (2023)
Appears in Collections:Artículos
Adobe PDF (2,57 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.