Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/122133
Título: Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime
Autores/as: Kafizas, Andreas
Wang, Xiuli
Pendlebury, Stephanie R.
Barnes, Piers
Ling, Min
Sotelo Vázquez, Carlos
Quesada Cabrera, Raúl 
Parkin, Ivan P.
Durrant, James R.
Clasificación UNESCO: 221009 Transferencia de energía
221001 Catálisis
230101 Espectroscopia de absorción
221125 Semiconductores
Palabras clave: Heterojunctions
Hole transfer
Minerals
Oxides
Recombination
Fecha de publicación: 2016
Publicación seriada: Journal of Physical Chemistry A 
Resumen: Anatase:rutile TiO2 junctions are often shown to be more photocatalytically active than anatase or rutile alone, but the underlying cause of this improvement is not fully understood. Herein, we employ transient absorption spectroscopy to study hole transfer across the anatase:rutile heterojunction in films as a function of phase composition. By exploiting the different signatures in the photoinduced absorption of trapped charges in anatase and rutile, we were able to separately track the yield and lifetime of holes in anatase and rutile sites within phase composites. Photogenerated holes transfer from rutile to anatase on submicrosecond time scales. This hole transfer can significantly increase the anatase hole yield, with a 20:80 anatase:rutile composite showing a 5-fold increase in anatase holes observed from the microsecond. Hole transfer does not result in an increase in charge-carrier lifetime, where an intermediate recombination dynamic between that of pure anatase (t1/2 ≈ 0.5 ms) and rutile (t1/2 ≈ 20 ms) is found in the anatase:rutile junction (t1/2 ≈ 4 ms). Irrespective of what the formal band energy alignment may be, we demonstrate the importance of trap-state energetics for determining the direction of photogenerated charge separation across heterojunctions and how transient absorption spectroscopy, a method that can specifically track the migration of trapped charges, is a useful tool for understanding this behavior.
URI: http://hdl.handle.net/10553/122133
ISSN: 1089-5639
DOI: 10.1021/acs.jpca.5b11567
Fuente: Journal of Physical Chemistry A [ISSN 1089-5639], v. 120(5), p. 715-723
Colección:Artículos
Vista completa

Citas SCOPUSTM   

138
actualizado el 29-dic-2024

Citas de WEB OF SCIENCETM
Citations

135
actualizado el 29-dic-2024

Visitas

26
actualizado el 23-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.