Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/122133
Title: Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime
Authors: Kafizas, Andreas
Wang, Xiuli
Pendlebury, Stephanie R.
Barnes, Piers
Ling, Min
Sotelo Vázquez, Carlos
Quesada Cabrera, Raúl 
Parkin, Ivan P.
Durrant, James R.
UNESCO Clasification: 221009 Transferencia de energía
221001 Catálisis
230101 Espectroscopia de absorción
221125 Semiconductores
Keywords: Heterojunctions
Hole transfer
Minerals
Oxides
Recombination
Issue Date: 2016
Journal: Journal of Physical Chemistry A 
Abstract: Anatase:rutile TiO2 junctions are often shown to be more photocatalytically active than anatase or rutile alone, but the underlying cause of this improvement is not fully understood. Herein, we employ transient absorption spectroscopy to study hole transfer across the anatase:rutile heterojunction in films as a function of phase composition. By exploiting the different signatures in the photoinduced absorption of trapped charges in anatase and rutile, we were able to separately track the yield and lifetime of holes in anatase and rutile sites within phase composites. Photogenerated holes transfer from rutile to anatase on submicrosecond time scales. This hole transfer can significantly increase the anatase hole yield, with a 20:80 anatase:rutile composite showing a 5-fold increase in anatase holes observed from the microsecond. Hole transfer does not result in an increase in charge-carrier lifetime, where an intermediate recombination dynamic between that of pure anatase (t1/2 ≈ 0.5 ms) and rutile (t1/2 ≈ 20 ms) is found in the anatase:rutile junction (t1/2 ≈ 4 ms). Irrespective of what the formal band energy alignment may be, we demonstrate the importance of trap-state energetics for determining the direction of photogenerated charge separation across heterojunctions and how transient absorption spectroscopy, a method that can specifically track the migration of trapped charges, is a useful tool for understanding this behavior.
URI: http://hdl.handle.net/10553/122133
ISSN: 1089-5639
DOI: 10.1021/acs.jpca.5b11567
Source: Journal of Physical Chemistry A [ISSN 1089-5639], v. 120(5), p. 715-723
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

129
checked on Jul 14, 2024

WEB OF SCIENCETM
Citations

128
checked on Jul 14, 2024

Page view(s)

26
checked on May 23, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.