Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121852
Título: Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages
Autores/as: Kumar, Navdeep
Biagio, Claudia Di
Dellacqua, Zachary 
Raman, Ratish
Martini, Arianna
Boglione, Clara
Muller, Marc
Geurts, Pierre
Marée, Raphaël
Clasificación UNESCO: 310503 Localización de peces
120317 Informática
Palabras clave: Bioimages
Deep Learning
Heatmap
Landmark Detection
Multi-Variate Regression
Fecha de publicación: 2023
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 17th European Conference on Computer Vision (ECCV 2022) 
Resumen: In this paper we perform an empirical evaluation of variants of deep learning methods to automatically localize anatomical landmarks in bioimages of fishes acquired using different imaging modalities (microscopy and radiography). We compare two methodologies namely heatmap based regression and multivariate direct regression, and evaluate them in combination with several Convolutional Neural Network (CNN) architectures. Heatmap based regression approaches employ Gaussian or Exponential heatmap generation functions combined with CNNs to output the heatmaps corresponding to landmark locations whereas direct regression approaches output directly the (x, y) coordinates corresponding to landmark locations. In our experiments, we use two microscopy datasets of Zebrafish and Medaka fish and one radiography dataset of gilthead Seabream. On our three datasets, the heatmap approach with Exponential function and U-Net architecture performs better. Datasets and open-source code for training and prediction are made available to ease future landmark detection research and bioimaging applications.
URI: http://hdl.handle.net/10553/121852
ISBN: 978-3-031-25068-2
ISSN: 0302-9743
DOI: 10.1007/978-3-031-25069-9_31
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 13804 LNCS, p. 470-486, (Enero 2023)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.