Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121852
Título: | Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages | Autores/as: | Kumar, Navdeep Biagio, Claudia Di Dellacqua, Zachary Raman, Ratish Martini, Arianna Boglione, Clara Muller, Marc Geurts, Pierre Marée, Raphaël |
Clasificación UNESCO: | 310503 Localización de peces 120317 Informática |
Palabras clave: | Bioimages Deep Learning Heatmap Landmark Detection Multi-Variate Regression |
Fecha de publicación: | 2023 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 17th European Conference on Computer Vision (ECCV 2022) | Resumen: | In this paper we perform an empirical evaluation of variants of deep learning methods to automatically localize anatomical landmarks in bioimages of fishes acquired using different imaging modalities (microscopy and radiography). We compare two methodologies namely heatmap based regression and multivariate direct regression, and evaluate them in combination with several Convolutional Neural Network (CNN) architectures. Heatmap based regression approaches employ Gaussian or Exponential heatmap generation functions combined with CNNs to output the heatmaps corresponding to landmark locations whereas direct regression approaches output directly the (x, y) coordinates corresponding to landmark locations. In our experiments, we use two microscopy datasets of Zebrafish and Medaka fish and one radiography dataset of gilthead Seabream. On our three datasets, the heatmap approach with Exponential function and U-Net architecture performs better. Datasets and open-source code for training and prediction are made available to ease future landmark detection research and bioimaging applications. | URI: | http://hdl.handle.net/10553/121852 | ISBN: | 978-3-031-25068-2 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-031-25069-9_31 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 13804 LNCS, p. 470-486, (Enero 2023) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.