Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121852
DC FieldValueLanguage
dc.contributor.authorKumar, Navdeepen_US
dc.contributor.authorBiagio, Claudia Dien_US
dc.contributor.authorDellacqua, Zacharyen_US
dc.contributor.authorRaman, Ratishen_US
dc.contributor.authorMartini, Ariannaen_US
dc.contributor.authorBoglione, Claraen_US
dc.contributor.authorMuller, Marcen_US
dc.contributor.authorGeurts, Pierreen_US
dc.contributor.authorMarée, Raphaëlen_US
dc.date.accessioned2023-04-13T10:59:00Z-
dc.date.available2023-04-13T10:59:00Z-
dc.date.issued2023en_US
dc.identifier.isbn978-3-031-25068-2en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/121852-
dc.description.abstractIn this paper we perform an empirical evaluation of variants of deep learning methods to automatically localize anatomical landmarks in bioimages of fishes acquired using different imaging modalities (microscopy and radiography). We compare two methodologies namely heatmap based regression and multivariate direct regression, and evaluate them in combination with several Convolutional Neural Network (CNN) architectures. Heatmap based regression approaches employ Gaussian or Exponential heatmap generation functions combined with CNNs to output the heatmaps corresponding to landmark locations whereas direct regression approaches output directly the (x, y) coordinates corresponding to landmark locations. In our experiments, we use two microscopy datasets of Zebrafish and Medaka fish and one radiography dataset of gilthead Seabream. On our three datasets, the heatmap approach with Exponential function and U-Net architecture performs better. Datasets and open-source code for training and prediction are made available to ease future landmark detection research and bioimaging applications.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 13804 LNCS, p. 470-486, (Enero 2023)en_US
dc.subject310503 Localización de pecesen_US
dc.subject120317 Informáticaen_US
dc.subject.otherBioimagesen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherHeatmapen_US
dc.subject.otherLandmark Detectionen_US
dc.subject.otherMulti-Variate Regressionen_US
dc.titleEmpirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference17th European Conference on Computer Vision (ECCV 2022)en_US
dc.identifier.doi10.1007/978-3-031-25069-9_31en_US
dc.identifier.scopus85151061249-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57656591000-
dc.contributor.authorscopusid57755028000-
dc.contributor.authorscopusid57803963100-
dc.contributor.authorscopusid57613420500-
dc.contributor.authorscopusid57203962680-
dc.contributor.authorscopusid6603478655-
dc.contributor.authorscopusid57213824001-
dc.contributor.authorscopusid6602096934-
dc.contributor.authorscopusid8724428800-
dc.identifier.eissn1611-3349-
dc.description.lastpage486en_US
dc.description.firstpage470en_US
dc.relation.volume13804 LNCSen_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150103-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,606
dc.description.sjrqQ2
dc.description.miaricds10,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.fullNameDellacqua, Zachary Joseph-
crisitem.event.eventsstartdate23-10-2022-
crisitem.event.eventsenddate27-10-2022-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

91
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.