Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/121852
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kumar, Navdeep | en_US |
dc.contributor.author | Biagio, Claudia Di | en_US |
dc.contributor.author | Dellacqua, Zachary | en_US |
dc.contributor.author | Raman, Ratish | en_US |
dc.contributor.author | Martini, Arianna | en_US |
dc.contributor.author | Boglione, Clara | en_US |
dc.contributor.author | Muller, Marc | en_US |
dc.contributor.author | Geurts, Pierre | en_US |
dc.contributor.author | Marée, Raphaël | en_US |
dc.date.accessioned | 2023-04-13T10:59:00Z | - |
dc.date.available | 2023-04-13T10:59:00Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 978-3-031-25068-2 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/121852 | - |
dc.description.abstract | In this paper we perform an empirical evaluation of variants of deep learning methods to automatically localize anatomical landmarks in bioimages of fishes acquired using different imaging modalities (microscopy and radiography). We compare two methodologies namely heatmap based regression and multivariate direct regression, and evaluate them in combination with several Convolutional Neural Network (CNN) architectures. Heatmap based regression approaches employ Gaussian or Exponential heatmap generation functions combined with CNNs to output the heatmaps corresponding to landmark locations whereas direct regression approaches output directly the (x, y) coordinates corresponding to landmark locations. In our experiments, we use two microscopy datasets of Zebrafish and Medaka fish and one radiography dataset of gilthead Seabream. On our three datasets, the heatmap approach with Exponential function and U-Net architecture performs better. Datasets and open-source code for training and prediction are made available to ease future landmark detection research and bioimaging applications. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 13804 LNCS, p. 470-486, (Enero 2023) | en_US |
dc.subject | 310503 Localización de peces | en_US |
dc.subject | 120317 Informática | en_US |
dc.subject.other | Bioimages | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Heatmap | en_US |
dc.subject.other | Landmark Detection | en_US |
dc.subject.other | Multi-Variate Regression | en_US |
dc.title | Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 17th European Conference on Computer Vision (ECCV 2022) | en_US |
dc.identifier.doi | 10.1007/978-3-031-25069-9_31 | en_US |
dc.identifier.scopus | 85151061249 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57656591000 | - |
dc.contributor.authorscopusid | 57755028000 | - |
dc.contributor.authorscopusid | 57803963100 | - |
dc.contributor.authorscopusid | 57613420500 | - |
dc.contributor.authorscopusid | 57203962680 | - |
dc.contributor.authorscopusid | 6603478655 | - |
dc.contributor.authorscopusid | 57213824001 | - |
dc.contributor.authorscopusid | 6602096934 | - |
dc.contributor.authorscopusid | 8724428800 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.description.lastpage | 486 | en_US |
dc.description.firstpage | 470 | en_US |
dc.relation.volume | 13804 LNCS | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2023 | en_US |
dc.identifier.conferenceid | events150103 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-BAS | en_US |
dc.description.sjr | 0,606 | |
dc.description.sjrq | Q2 | |
dc.description.miaricds | 10,0 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.fullName | Dellacqua, Zachary Joseph | - |
crisitem.event.eventsstartdate | 23-10-2022 | - |
crisitem.event.eventsenddate | 27-10-2022 | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
2
checked on Nov 24, 2024
Page view(s)
91
checked on Oct 12, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.