Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121798
DC FieldValueLanguage
dc.contributor.authorSosa Trejo,David-
dc.contributor.authorBandera, Antonio-
dc.contributor.authorGonzález, Martín-
dc.contributor.authorHernández León, Santiago Manuel-
dc.date.accessioned2023-04-11T13:04:19Z-
dc.date.available2023-04-11T13:04:19Z-
dc.date.issued2023-
dc.identifier.issn0269-2821-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/121798-
dc.description.abstractPlankton are an important component of life on Earth. Since the 19th century, scientists have attempted to quantify species distributions using many techniques, such as direct counting, sizing, and classification with microscopes. Since then, extraordinary work has been performed regarding the development of plankton imaging systems, producing a massive backlog of images that await classification. Automatic image processing and classification approaches are opening new avenues for avoiding time-consuming manual procedures. While some algorithms have been adapted from many other applications for use with plankton, other exciting techniques have been developed exclusively for this issue. Achieving higher accuracy than that of human taxonomists is not yet possible, but an expeditious analysis is essential for discovering the world beyond plankton. Recent studies have shown the imminent development of real-time, in situ plankton image classification systems, which have only been slowed down by the complex implementations of algorithms on low-power processing hardware. This article compiles the techniques that have been proposed for classifying marine plankton, focusing on automatic methods that utilize image processing, from the beginnings of this field to the present day.-
dc.languageeng-
dc.relation.ispartofArtificial Intelligence Review-
dc.sourceArtificial Intelligence Review [ISSN 0269-2821], March 2023-
dc.subject251001 Oceanografía biológica-
dc.subject220990 Tratamiento digital. Imágenes-
dc.subject.otherImage processing-
dc.subject.otherMarine plankton-
dc.subject.otherPattern recognition-
dc.subject.otherPlankton classification-
dc.titleVision-based techniques for automatic marine plankton classification-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.1007/s10462-023-10456-w-
dc.identifier.scopus2-s2.0-85150616016-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid58150518700-
dc.contributor.authorscopusid57201603823-
dc.contributor.authorscopusid57198487393-
dc.contributor.authorscopusid6701465678-
dc.identifier.eissn1573-7462-
dc.investigacionCiencias-
dc.type2Artículo-
dc.utils.revision-
dc.date.coverdateEnero 2023-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-BAS-
dc.description.sjr3,26
dc.description.jcr12,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Oceanografía Física-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Oceanografía Biológica y Cambio Global-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-3085-4969-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameSosa Trejo,David-
crisitem.author.fullNameHernández León, Santiago Manuel-
Appears in Collections:Artículos
Adobe PDF (1,57 MB)
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

13
checked on Jul 22, 2023

Download(s)

14
checked on Jul 22, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.