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Abstract
Plankton are an important component of life on Earth. Since the 19th century, scientists 
have attempted to quantify species distributions using many techniques, such as direct 
counting, sizing, and classification with microscopes. Since then, extraordinary work has 
been performed regarding the development of plankton imaging systems, producing a mas-
sive backlog of images that await classification. Automatic image processing and classi-
fication approaches are opening new avenues for avoiding time-consuming manual pro-
cedures. While some algorithms have been adapted from many other applications for use 
with plankton, other exciting techniques have been developed exclusively for this issue. 
Achieving higher accuracy than that of human taxonomists is not yet possible, but an expe-
ditious analysis is essential for discovering the world beyond plankton. Recent studies have 
shown the imminent development of real-time, in  situ plankton image classification sys-
tems, which have only been slowed down by the complex implementations of algorithms 
on low-power processing hardware. This article compiles the techniques that have been 
proposed for classifying marine plankton, focusing on automatic methods that utilize 
image processing, from the beginnings of this field to the present day.
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1  Introduction

Plankton are tiny organisms living in the ocean . They are fundamental to the ocean’s food 
chain, serve as an indirect indicator of water pollution (Suthers and Rissik 2019), and fix 
approximately 40% of the world’s carbon (Falkowski 1994). When researchers started esti-
mating the carbon cycle, they found it to be straightforward for terrestrial areas (Table 1, 
Riley (1944)), while the opposite was found for the ocean. The first approaches gave the 
ocean eight times the carbon fixation yield of land (155 Gt C yr−1 , Table 1.III, Rabinowitch 
(1945)). Later, this quantity was reduced to slightly less than the terrestrial value (15 Gt 
C yr−1 , Nielsen (1952)). Currently, this estimation lies between the cited previous values 
(approximately 69 Gt C yr−1 , del Giorgio and Duarte (2002)), but still presents consid-
erable uncertainty. As an integral and necessary entity in the global carbon and nutrient 
cycles (Blaschko et al. 2005; Sieracki and Webb 1991) and a key element in regulating the 
planet’s temperature (Blaschko et al. 2005; Hays et al. 2005), many approaches were pro-
posed during the last few decades for accurately assessing the role of plankton in the global 
ocean.

The abundance, size, and taxonomy estimates of plankton organisms are of paramount 
importance for accounting for the role of living marine components in the flux, export, and 
sequestration of carbon to the interior of the ocean. Autotrophic organisms uptake CO

2
 

for photosynthesis in the euphotic zone, allowing them to fix anthropogenic carbon into 
organic matter in the ocean. This carbon circulates through the trophic web of the ocean, 
and a small fraction is transported downwards through passive and active fluxes as well as 
physical mixing (Buesseler et al. 2007). Passive flux is related to the sinking of organisms 
and particles, while active flux is transport carried out by zooplankton and micronekton 
migrants by consuming carbon in the shallower layers of the ocean and respiring, excret-
ing, egesting, and dying in the meso- and bathypelagic zones (Hernández-León et al. 2019, 
2020). The carbon transported by planktonic organisms towards the deep ocean will remain 
there for decades or centuries, avoiding the CO

2
 accumulation process in the atmosphere 

and avoiding a faster increase in the planet’s temperature. Another important fraction of 
this carbon will be respired in the upper layers of the ocean, returning to the atmosphere. 
The role of phyto- and zooplankton in this transport system is of main concern in climate 
change studies. To account for these fluxes, knowledge of the biomass and physiology of 
the ocean biota is required (e.g., Garijo and Hernández-León (2015)). Both parameters can 
be assessed through the abundance, sizes, and taxonomies of organisms. Since the direct 
counting, sizing, and classification of the microscopic plants and animals of the sea is quite 
laborious and time-consuming, oceanographers have relied on technology to more quickly 
quantify these organisms.

The first method employed a microscope to estimate the inorganic and organic sus-
pended matter retained in a molecular filter (Goldberg et al. 1952). Since microscopic work 
is tedious, Jerlov (1955) employed a Tyndall metre, which presented a relationship between 
seawater scattering and the total surface area of the particles contained on it. Although the 
Tyndall metre readings had an accuracy of ±10% above that of a microscope, the predomi-
nance of small and transparent particles led to measurement problems, thus highlighting 
microscopy as a superior method.

After succeeding in counting blood cells (Mattern et al. 1957), scientists began to use 
the impulse Coulter counter (Model A) to count marine organisms (Hastings et al. 1962; 
Maloney et  al. 1962). Organisms placed in an electrically conductive medium pass 
through a small aperture, producing a voltage drop depending on the organism’s size. 
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Then, these impulses are amplified, recorded, and visualized. Organisms with diameters 
from 3 � m to 1 mm are counted and sized by using different aperture sizes (Sheldon 
and Parsons 1967b), with densities ranging from 50 to 100,000 cells/ml (Hastings et al. 
1962). This was a significant advance in accounting for the abundance of phytoplank-
tonic cells, in terms of not only accuracy but also counting speed. The posterior Coul-
ter counter version (Model B, Sheldon and Parsons (1967a)), jointly with an automatic 
cell-size distribution plotter (Model J), even allowed researchers to measure aggregate 
forms (i.e., chain-forming diatoms, Parsons (1965)). Despite its accuracy and speed, this 
method counts all falling particles in the same size range (Rehnberg et al. 1982) without 
regard to live or dead cells, fragmented cells, or debris. Maddux and Kanwisher (1965) 
developed an in situ particle counter by applying the same Coulter counter principle but 
installing it at the cod end of a tow-net. Later, other systems were developed, such as 
the automated plankton counter (Cooke et al. 1970), which are capable of sizing larger 
particles than those handled by the Coulter counter. Its operating mode is as follows: an 
organism’s image is projected on an array of photosensors while a fluid stream carries 
it; when the path of light to the first photosensor is blocked, an impulse sequence initi-
ates, finishing when the first sensor is again unblocked, indicating the organism’s pas-
sage. This instrument was practical for counting and sizing organisms, eclipsed only by 
sample clogging (Fulton 1972). In 1971, acoustics was incorporated into plankton quan-
tification (Beamish 1971). However, until now, captured samples were needed to know 
what the echo caught; this idea is known as ground truthing (McClatchie et al. 2000). 
This method is helpful for spatial distribution determination but not for identification.

Significantly, none of these techniques found general acceptance by the scientific 
community, probably because they were not explicitly developed for dealing with this 
specific scenario (Jeffries et  al. 1981) and could not discriminate between taxonomic 
groups (Jeffries et al. 1984). Furthermore, all these methods were developed to process 
water samples. In contrast, in 1953, Nishizawa et al. (1954) captured in situ underwa-
ter photographs of suspended matter and plankton using a so-called undersea observa-
tion chamber (Fig. 1). Therefore, the authors observed a more common distribution of 
larger particles than those reported in the literature (Goldberg et al. 1952; Jerlov 1953). 
They considered that the water sampling process could damage or disintegrate these 
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Fig. 1   Initial approaches for plankton quantification
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large particles. Other authors agreed with this (Riley 1963; Mullin 1965), noting how 
natural aggregations could be broken up during sampling or rendered unidentifiable and 
biased when using standard preservation techniques (Murphy and Haugen 1985; Ort-
ner et al. 1981; Zarauz and Irigoien 2008), “which probably accounts for the fact that 
this phenomenon passed largely unnoticed until the advent of direct undersea observa-
tion” (Riley 1963). Hence, in  situ water photography presented an excellent sampling 
approach compared to traditional net-sampling techniques, demonstrating the advantage 
of sampling the fragile taxa that would be damaged in other circumstances (Olney and 
Houde 1993; Tiselius 1998).

Since the 1980s, many plankton imaging systems have emerged, from laboratory to 
in  situ underwater video systems (Table  1, Lombard et  al. (2019)). These systems have 
produced a massive backlog of unlabelled plankton data, which, in conjunction with the 
limited availability of human taxonomic expertise, represents a thread for future scientific 
studies (Simpson et al. 1992; Culverhouse et al. 2006; MacLeod and Association 2007). 
This review aims to describe and compare all the image classification algorithms that have 
been implemented to date for marine plankton. In this way, we consider that this work may 
be helpful for those who want to develop new image classification algorithms for applica-
tion to marine plankton in the future.

The rest of the paper is organized as follows. Section 2 briefly defines plankton. Sec-
tion 3 describes the selected criteria for this review. Section 4 divides the work developed 
in the selected papers grouped into six categories depending on their classification tech-
niques. Table 1 presents a summary of these reviewed papers. In Sect. 5, the conclusion 
and future research directions are discussed.

2 � A look at plankton

Plankton drift into the ocean in swarms, a concept known as patchiness in biological 
oceanography (Folt and Burns 1999). These small organisms range in size from tenths of 
microns up to centimetres are categorized into phytoplankton (mainly autotrophs, acting 
as plants) and zooplankton (mainly heterotrophs, acting as animals). Figure 2 shows snap-
shots of plankton that belong to four valuable datasets found while producing this review. 
A vast and diverse image dataset is vital for developing new classification procedures.

Figure  2A shows a phytoplankton sample (dinoflagellate, ceratium) from the dataset 
released by the Woods Hole Oceanographic Institution (WHOI). The WHOI-Plankton 
dataset was one of the first public databases collected in situ with the Imaging FlowCy-
tobot (IFCB) at Martha’s Vineyard Coastal Observatory, Massachusetts (Sosik 2015). It 
contains more than 3.5 million labelled images falling into 103 categories.

Fig. 2   Samples from four plankton datasets
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Figure  2B shows a zooplankton sample from the PlanktonSet dataset (crustacean, 
amphipod) released by Oregon State University’s Hatfield Marine Science Center. This 
dataset was initially offered to the National Data Science Bowl (NDSB) competition, col-
lected with the In Situ Ichthyoplankton Imaging System (ISIIS) in the Straits of Florida 
(Cowen et al. 2015). It contains 30,000 labelled images falling into 121 categories, plus a 
test set of unlabelled images.

Figure 2C shows an image containing two phytoplankton from the PMID2019 dataset 
(diatom, coscinodiscus - rounded one, and dinoflagellata, ceratium fusus - elongated one) 
released by the Ocean University of China, Qingdao. This was the first available high-res-
olution phytoplankton colour dataset captured with an Olympus BX53 fluorescence micro-
scope from preserved samples collected in Qingdao Jiaozhou Bay, Shandong (Li et  al. 
2019). It contains over 10,000 labelled phytoplankton images from 24 categories.

Figure  2D shows a zooplankton sample from the DYB-PlanktonNet dataset (crusta-
cean, shrimp-like) released by the Chinese Academy of Sciences, Shenzhen Institute of 
Advanced Technology. This dataset was collected with an innovative in situ colour imager 
installed on a buoy in the South China Sea near Shenzhen city (Li et al. 2021b). It contains 
over 46,000 labelled plankton images from 90 categories.

3 � Article selection criteria

The reviewed papers were selected based on the following exclusion criteria.
Recent papers classifying low-quality captured images were discarded because they 

lacked details and were blurred or out of focus, making their classification processes even 
more complicated and distracting from the aim of this paper.

Classification studies using flow cytometry (FC) data were discarded because they 
employed fluorescent and light scattering characteristics for classification instead of a 
specimen’s picture (McKinnon 2018). However, we included papers that classified images 
acquired with the Imaging FlowCytobot or the FlowCam; these instruments are based on 
the FC principle but add video technology to produce high-resolution photos.

Papers classifying images with specific features related to their acquisition methods, 
such as fluorescence microscopy (Blackburn et al. 1998; Rodenacker et al. 2006; Ng et al. 
2017), polarized microscopy (Tiwari and Gallager 2003), or luminous events of biolu-
minescent plankton (Kocak et  al. 1999), were discarded. These classification procedures 
employ features that are different from those extracted from a specimen’s image.

In addition, articles with low correct classification rates were also excluded (<60% 
accuracy), as were articles with automatic > 99% classification rates (e.g., Loke et  al. 
(2004)). Most recent articles with similar procedures to those used in the past were not 
considered (e.g., the work of Zhou et al. (2008) was similar to that of Liu et al. (1994) and 
Thonnat and Gandelin (1988)). Articles with equivalent procedures but achieving meagre 
accuracy improvements were discarded (e.g., Kramer et al. (2011) improved their accuracy 
by as much as 2.1%), and articles categorizing fewer than four classes were also discarded.

This study reviewed novel techniques in plankton classification, categorizing black and 
white or greyscale images, from their beginnings until today.
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4 � Image classification chronology

In 1970, Health Sciences established the techniques used in the forthcoming automated 
plankton identification systems, with a special-purpose computer extracting a set of 
parameters describing blood cell features for later identification using pairwise separation 
(Ingram and Preston 1970). Due to the inability to perform automatic plankton identifica-
tion with these methods (see the introduction), Fawell (1976) introduced a similar tech-
nique using image analysis equipment (Quantimet 720, IMANCO (1970)) to extract mor-
phometric features from plankton samples for later use in an image classifier. This strategy 
revealed the path for future plankton identification works until the advent of deep learning, 
where feature extraction and classification are intimately tied together.

4.1 � Classification via linear discriminant analysis

Linear discriminant analysis (LDA) is a popular supervised classification technique that 
assumes a normal or Gaussian distribution for data points and identical covariance matri-
ces for each class. It is also known as Fisher’s LDA, as Ronald A. Fisher developed it in the 
1930s. LDA aims to find the projection hyperplane that maximizes the distance between 
the projected means of the given classes and minimizes the variance within the classes; 
this can be stated as a generalized eigenvalue problem in a multiclass scenario. If c is the 
number of training classes, we can find c − 1 discriminatory directions that separate the c 
classes as much as possible (the largest eigenvectors, Fig. 3).

Uhlmann et  al. (1978) designed a pattern recognition system for phytoplankton. For 
image acquisition purposes, they built a custom camera device (vidicon) to scan either 
phytoplankton photographs or species preserved in formalin. After performing contrast 
enhancement, the control unit transferred the scanned images to a computer (Robotron 
KRS 4200), which processed the patterns into a 2-D power frequency spectrum, defining 
a position in the polar space that was independent of translations and rotations. Two years 
later, Schlimpert et al. (1980) published the details of this work. To construct a linear clas-
sifier, they prepared a set of training patterns comprising five classes, which were itera-
tively presented to the classifier while tuning its parameters. As this technique produced 
unsatisfactory results, they combined two interlacing classes, trained the classifier again 
with four classes, and separated these combined classes in a posterior second stage. They 
obtained a 93.2% correct classification rate when categorizing the five classes. Even with 
this remarkable result, they expected that a better classification accuracy could be obtained 

Fig. 3   Iterative construction of 
an optimal hyperplane in a 2-D 
feature space (Schlimpert et al. 
1980)
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if the scan resolution was improved. The 2-D power frequency spectrum processing step 
took approximately 10  s per pattern, and the classifier converged between 3 and 170  s, 
depending on the class. Nevertheless, the authors were aware that higher speeds could be 
attained by using parallel processing. Given the resolution of the scanned images shown in 
their paper, this work was a remarkable effort at the time. However, LDA is not the most 
appropriate method when some input variables are correlated, as shown in this work.

Jeffries et al. (1980) also employed LDA but instead categorized zooplankton. The idea 
was to classify species into ecologically and taxonomically meaningful groups. To this end, 
they identified which species were viable for classification according to morphometric rela-
tions. They employed two datasets: photocopied plates of species obtained from published 
literature and contours of preserved specimens traced by hand on acetate sheets; the first 
was captured with a vidicon, and the second was obtained with the Bausch and Lomb QMS 
system. The first dataset was classified into six shape categories using LDA by the jack-
knife procedure, yielding a 93.1% correct classification rate. The second dataset was classi-
fied into 19 major species using the LDA-based nonpooled covariance procedure, reaching 
a 97.9% correct classification rate due to the combination of four morphometric relations. 
This work marked the beginning of automatic zooplankton image classification, achieving 
an 85% time reduction compared to manual processing in routine laboratory work.

Four years later, Jeffries et  al. (1984) built a custom vidicon system to capture better 
plankton images. As a novelty, six satellite microprocessors were employed for feature 
extraction. These microprocessors worked in parallel under a central computer, obtaining 
an 89% correct classification rate when categorizing eight groups with the same five fea-
tures as those in their previous work (Jeffries et al. 1980). Katsinis et al. (1984) improved 
this classification process by employing eight satellite microprocessors to extract nine mor-
phometric features, obtaining a 92% correct classification rate in less than half the time 
required by Jeffries et al. (1984). These studies employed custom edge detection techniques 
to erase all zooplankton antennae and swimming legs, which led to problems when per-
forming feature extraction. Although the plankton group classification results were promis-
ing, species identification was still impossible due to the poor quality of the input images. 
Additionally, it was necessary to manually check that no organisms overlapped before 
scanning. These works are noteworthy due to the star architectures of their central comput-
ers and satellites (the microprocessors), demonstrating how easy it is to implement an LDA 
classifier. However, as stated before, an LDA classifier may not be the most appropriate 
classifier when similar plankton species exist.

4.2 � Classification via hierarchical clustering

Hierarchical clustering (HC) is an unsupervised classification algorithm that organizes a 
group of unlabelled data points into a tree-shaped structure (called a dendrogram). The 
dendrogram can be built in a bottom-up manner, in which all data points are initially con-
sidered as single clusters that are iteratively merged until only one cluster remains, or in a 
top-down manner, in which all data points initially belong to a single cluster that is recur-
sively split until each cluster includes only a single data point. These approaches are named 
agglomerative and divisive HC, respectively (Fig. 4). HC gained notoriety after the pub-
lication of the "Numerical Taxonomy" book (Sneath and Sokal 1973), where the authors 
presented the advantages of HC in the field of biology and its application to organism 
classification.
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Chehdi et  al. (1986) from ENST Bretagne collaborated with the IFREMER in Brest 
using an agglomerative HC approach to classify 16 groups of zooplankton (Fig. 4A). A 
camera installed on a microscope captured images, and Freeman’s chain code was used to 
encode the contours. The appendages were removed to focus on bodies, separating those 
that seemed to overlap. They tested this system on 320 specimens by employing ten mor-
phometric features; the algorithm could only find specimens falling into eight biological 
groups. Although this result was not the best, biologists liked how the approach gathered 
specimens, but improvements in image quality were mandatory for better classification. 
Six years later, Chehdi and Coquin (1992) optimized this method to classify 14 groups of 
zooplankton. As a novelty, they preprocessed the input images to resolve their problems 
concerning shadows, lights, and high-frequency noises. Seven features, five morphometric 
and two inertial features, were extracted to orient the specimens. They successfully classi-
fied 280 specimens into 14 groups, obtaining a 78.8% correct classification rate. As a draw-
back, this method required manual supervision to control the grouping at each aggregation 
level.

Thonnat and Gandelin (1988) applied a divisive HC method to classify Mediterranean 
zooplankton and their developmental stages for the first time (Fig. 4B). After performing 
photogram digitization and organism detection, they extracted morphological, densitomet-
ric, external and internal parameters. Then, marine biologists defined 59 prototypes con-
taining descriptions for each class and subclass of zooplankton. Finally, they proceeded 
classify the plankton with 66 conditional rules, where each image took 122 s to process. 
They tested this classifier with only 40 zooplankton images but provided no information 
on accuracy, stating that they were working on constructing a more extensive dataset. This 
plankton application resulted from extending their previous work (classifying galaxies with 
HC) to other areas. While applying HC to plankton classification seems interesting, it may 
not be the most appropriate method because it does not use prior knowledge about the 
relationships between the different species. However, the employed tree-like structure pro-
vides a valuable visual representation, helping scientists understand how different species 
are related to one another and enabling them to identify patterns.
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4.3 � Classification via artificial neural networks

To mimic the architecture of the human brain, artificial neural networks (ANNs) were 
introduced in the 1940s. ANNs are composed of artificial neurons. Each artificial neuron 
has inputs and generates a single output, which can be provided as an input to other neu-
rons. These connections, such as the synapses in a biological brain, can transmit a signal 
from one neuron to another. A weight value increases or decreases the strength of the sig-
nal traversing a connection. A typical ANN organizes its neurons into several layers: one 
input layer and one output layer with hidden layers between them. The weight values are 
usually adjusted by minimizing the difference between the processed output of the ANN 
and the target output. This training procedure is the most relevant aspect of forming a reli-
able model.

Simpson et al. (1991, 1992) published the first work that applied a ANN for plankton 
identification. Three years later, Culverhouse et  al. (1994) employed the same network 
but increased the number of categories from two to five congeneric species, which were 
difficult to classify even for taxonomists. The topology of the ANN was a 15-3-5 fully 
connected network (every neuron in one layer was connected to every neuron in the next 
layer). Backpropagation was used to tune the weight values of the ANN based on the 
error rate obtained in the previous iteration. The employed dataset was the same as that 
used by Williams et al. (1994), which was comprised of digitized photomicrographs that 
were validated by six experts into two subdatasets: one for training and another for test-
ing. After generating Fourier spatial frequencies as features, they ran several trials with 
a randomized dataset size. The minimum obtained mean test error was 23% on unseen 
images. Species that were difficult to classify by experts were also difficult to classify with 
the ANN due to how bad the Fourier components of these species were, as clearly seen in 

Fig. 5   Sixteen-bin FFT histograms for C. vanhöffeni and C. convallaria. An ANN correctly classified 53% 
of the C. vanhöffeni samples and 98% of the C. convallaria samples (Culverhouse et al. 1994)
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Fig. 5. This motivated the authors to look for other preprocessing techniques in conjunction 
with adjustments to the Fourier technique and their ANN. The authors knew that there was 
room for improvement because Williams et al. (1994) proved that this dataset was discrimi-
nable with 95% confidence by conducting a multivariate statistical analysis on the Fourier-
transformed data. This work is exemplary for understanding how ANNs can be sensitive to 
data quality, performing poorly when the input data are noisy or contain outliers.

Ellis et  al. (1994) also employed the same technique used by Simpson et  al. (1991, 
1992) to classify four plankton species. As a novelty, they combined the Fourier spatial fre-
quencies with the internal textures of the plankton bodies extracted using the Gabor func-
tion. They achieved a 73% accuracy rate using these combined features, but the accuracy 
was only 69.8% or 43.7% when using only the Fourier-transformed spatial frequencies or 
the texture features alone, respectively. This ground-breaking work was the first to look 
at the advantage of combining both types of features in the field of plankton classifica-
tion. However, as shown in their paper, image preprocessing is crucial for attaining high 
accuracy, making this technique very time-consuming for plankton classification and other 
applications.

Culverhouse et al. (1996) developed an automatic system for classifying 23 species of 
dinoflagellates identified as having negative impacts on the aquaculture industry. They 
first digitized the specimens archived at the Plymouth Marine Laboratory and fresh sam-
ples collected by the Spanish Institute of Oceanography. Afterwards, these samples were 
labelled by experts to create a database. Then, they determined the edges using the Sobel 
operator, where 60 features were extracted, including shape and texture features. Later, 
they compared the classification performance of two ANNs with that of two classic mul-
tivariate statistical techniques. The radial basis function (RBF) ANN performed the best 
with an 83% classification accuracy compared to that of taxonomists, who achieved an 85% 
rate. The authors highlighted these results because the classifiers were trained and tested 
from field-collected specimens instead of cultured specimens. While this system could 
not handle overlapping specimens, detritus-contacting samples did not appear to affect the 
accuracy of classifier because they were much smaller than plankton. This system evolved 
slightly, and in 2000, the software was designated as dinoflagellate categorization by an 
ANN (DiCANN) (Culverhouse et al. 2000). Although taxonomists slightly outperformed 
the ANN, this study evaluated how ANNs were superior to other discriminant methods, 
even to taxonomists, given that their better accuracy could fade away with psychological 
factors such as short-term memory, fatigue, boredom, recency effects, and positive bias. 
The potential sample analysis time reduction from human taxonomists to an ANN was 
from 120 to 5 min. Additionally, this work confirmed that data preprocessing is important 
for ANNs; therefore, the authors had to develop a specific preprocessing technique to man-
age debris.

Tang and his colleagues (Tang and Stewart 1996; Tang et  al. 1998) produced a pat-
tern recognition system to classify the massive quantity of images collected with the Video 
Plankton Recorder (VPR) (Davis et  al. 1992). First, a video processing system rejected 
objects that were out of focus. Next, the system extracted features with three methods: 
moment invariants, Fourier boundary descriptors, and granulometric features; the three 
techniques grabbed shape information, while the latter method also acquired texture infor-
mation. Later, the authors removed redundant information by reducing the feature vectors 
using the Karhunen-Loeve transform (KLT). Finally, they applied the supervised learning 
vector quantization (LVQ) ANN classifier to six classes of plankton. Due to the time-con-
suming nature of the classifier, they used a parallel training strategy. Regarding the results, 
they focused on which feature or feature combination gave the best accuracy instead of 
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studying which were the best network parameters, obtaining a 92.2% accuracy on the test 
set using the combined feature vector. This work demonstrated the benefit of using granu-
lometric features alone or in combination with other features, as shown in Table 1 of their 
paper, which helped counteract the noise, occlusion, and variability of the dataset. It is also 
worth noting the innovative parallel strategy used to reduce the training time of the LVQ 
algorithm.

Ellis et  al. (1997) developed an alternative method for classifying six phytoplank-
ton species. It combined the results of different individual classifiers into one result with 
an arbitration algorithm; this approach was established based on the idea that a group of 
experts produces a more accurate classification than an individual expert. They named 
their technique "classification by committee". First, they described the image textures with 
a Gabor filter, which enabled the input image to be segmented into a background and fore-
ground. Then, five different shape and texture feature vectors were extracted from the fore-
ground and individually employed to train five ANNs, obtaining five different classification 
performances. These five different results were combined with three algorithms based on 
several criteria: the majority of votes, the sum of votes, and the most confident network, 
where each network had a single vote. Among the three criteria, the most confident net-
work combination offered a maximum accuracy of 84%. Finally, the authors compared 
these “classification by committee" techniques with another method called “classification 
by collective machines", which combined the five different obtained results with an ANN 
instead of criteria. This latter method slightly outperformed “classification by committee” 
(70.3% versus 68.7% accuracy, respectively). In all cases, this work showed that combining 
networks’ results with a criterion or an ANN resulted in higher accuracy than picking the 
best single ANN, but this was only true when the individual ANNs had comparable accu-
racies. This work tried to increase classification performance based on perspectives other 
than those used in previously reviewed papers. Although these techniques were innovative 
for plankton classification, the authors were inspired by prior works (Jacobs et al. 1991; 
Wolpert 1992; Battiti and Colla 1994).

Two years later, Dollfus and Beaufort (1999) applied position-normalized images 
directly on an ANN instead of using feature vectors. The authors employed free weights 
because neurons specialized better in specific places (in normalized images), increasing 
the probability of correct classification. Thus, they obtained an average correct classifi-
cation rate of 86% when categorizing 13 species of calcareous nanoplankton. This clas-
sification system was named SYRACO2, proving helpful for natural forms with high 
intravariability. In addition, they found that algorithms performing position normalization 
needed to be more robust. Therefore, in 2004, they employed parallel ANNs (Beaufort and 
Dollfus 2004) in a system capable of categorizing nonposition-normalized images. Thus, 
the images were presented directly to the ANN (vision module), and in the case of weak 
identification, a second ANN (motor modules) performed up to five actions on each image 
(translation, rotation, dilatation, contrast, and symmetry) that helped to confirm or deny the 
initial weak identification result. This updated system achieved 91% accuracy in classify-
ing 11 categories, with a speed of 7 s per image. It is notable that in this work, the authors 
attained a better accuracy by confronting the weak points of ANNs: the complicated pre-
processing step and their effectiveness with correlated inputs. The direct image input pro-
cess used by the network was similar to the procedure employed in a convolutional neural 
network (CNN).

Hu and his colleagues (Hu and Davis 2006; Hu 2006) presented a new system employ-
ing two classifiers: the first was an ANN using shape-based features (the same as in Tang 
and Stewart (1996); Tang et  al. (1998)), and the second was a support vector machine 
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(SVM) using texture-based features (the same as that in Hu and Davis (2005)). Then, 
both classifiers’ outputs were combined, resulting in a final correct identification if both 
agreed to the same class or an unknown result otherwise, as shown in Fig. 6. This system 
achieved 64.7% accuracy compared to the 61% accuracy attained by Davis et al. (2004) on 
the same dataset using an LVQ ANN classifier. The dataset was collected with the VPR 
and comprised seven major categories. This dual classifier performed better for taxa with 
low relative abundance than a single classifier fed with a unique feature vector containing 
stacked shape and texture information. Although this work employed a different approach 
for combining classifiers’ results than the “classification by committee” technique of Ellis 
et  al. (1997), they both documented that when using classifiers in parallel and merging 
their results with any strategy, a broader spectrum of image details can be covered, thus 
resulting in higher accuracies.

4.4 � Classification via support vector machines

Support Vector Machines (SVMs) were introduced in the 1990s. The aim of an SVM is to 
find the hyperplane that classifies the given data points and has the maximum margin (the 
maximum distance between the data points of both classes). Contrary to LDA, an SVM 
makes no assumptions about the data at all. Moreover, if LDA produces an analytical solu-
tion, SVM-based classification is an optimization problem. An SVM does not make use 
of the entire input dataset. The subsets of data points that are closest to the hyperplane are 
called support vectors, and the SVM is optimized over these vectors. Then, the support 
vectors determine how the SVM discriminates between classes.

Luo et  al. (2003) published the first work applying an SVM to classify the massive 
quantity of images collected with the Shadow Image Particle Profiling Evaluation Recorder 
(SIPPER) (Samson et al. (2001)). After performing noise suppression, they calculated gen-
eral and specific descriptors to produce 29 features. Due to the binary nature of the images, 
they lacked texture information. They classified two datasets comprising six plankton spe-
cies with a soft-margin SVM. The first was classified with 90% accuracy, and the second 
was classified with 75.1% accuracy. The low accuracy achieved on the second dataset 
was due to insufficient image quality and unknown objects that could not even be manu-
ally identified. To speed up the feature calculation process without compromising accu-
racy, they published an expansion of this work (Luo et  al. 2004a) where they described 
a selection process to reduce the number of features from 29 to 15. Hence, they obtained 
similar accuracies for both datasets attaining a processing time of 160 s for 6000 images 

LVQ-ANN

ANN == SVMSVMTextures

Shape

Dataset

Feature
extraction

Unknown
category

Assign
agreed

category 

T

F

Fig. 6   Dual-classification system implemented by Hu and Davis (2006)
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with a one-versus-one approach. They acknowledged the need to develop new features for 
the higher-resolution version of SIPPER (25mm p/pixel). It is remarkable how the authors 
wisely picked a soft-margin SVM to cope with the noisy nature of the dataset. A soft-mar-
gin SVM tries to maximize accuracy while allowing some misclassification.

Hu and Davis (2005) employed co-occurrence matrix (COM) features with an SVM to 
classify images captured with the VPR. Co-occurrence matrices are textural features that 
describe the frequency at which one grey tone appears in a specified location in relation to 
another grey tone on an image (Haralick et al. 1973). Thus, their system computed eight 
COMs per image to perform posterior classification with an SVM. They obtained a 72% 
accuracy compared with the 61% accuracy of Davis et al. (2004). Both approaches classi-
fied the same dataset comprising seven categories, but the latter with an ANN was obtained 
from Tang and Stewart (1996). In another attempt, the authors combined texture features 
with shape-based features as classifier inputs, obtaining a mere 1% accuracy improvement 
over that achieved with COM features alone. After several tests, they concluded that the 
main accuracy improvement was achieved due to the COM features instead of the nature 
of the classifier, confirming that texture-based features are ideal for classifying field-col-
lected images. This work highlighted that features should be selected depending on the 
given image’s nature (captured in the laboratory or in situ); this step is more critical than 
selecting or tuning a specific classifier. Moreover, a COM has the advantage of low compu-
tational requirements. The COM-SVM technique reduced the manual identification process 
from weeks to several hours.

Lisin et  al. (2005) tried using a new method to deal with plankton images in which 
occlusion and clutter were present. First, they computed global features based on shape 
and texture information and local features based on the scale invariant feature transform 
(SIFT). Then, the features were independently classified; the global features were classi-
fied by an SVM, and the local features were classified by a nonparametric density (NPD) 
classifier, attaining 55% and 52% accuracy, respectively. Later, the authors tested two 
methods for combining the previous classifiers’ outputs: stacking and 2-tiered hierarchi-
cal classification. They obtained the highest accuracy (65.5%) with the stacking combina-
tion method on a 14-category dataset captured with the VPR (Fig. 7). Stacking consisted 
of concatenating the outputs of different classifiers (in this case, the SVM and NPD out-
puts) and using the result as an input vector (meta-features) for a meta-classifier (an SVM), 
which produced the final output. As in previous works (Ellis et  al. 1997; Hu 2006), the 

SVM (global) NPD (local) Stacking HC
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Fig. 7   Accuracies achieved by different classification techniques (Lisin et al. 2005)
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authors demonstrated that combining different classifier outputs resulted in higher accu-
racy. Nevertheless, they stated that stacking was rarely exploited in artificial vision applica-
tions. Although this ensemble technique delivered a low accuracy, it was something new in 
plankton classification.

Wang et al. (2006) also benefited from COM features, but this time they operated at the 
geometric and pixel levels instead of the texture level. First, they searched for the points of 
interest for use as the local extraction centres with a Harris detector. After performing nor-
malization, they computed a 128-dimensional SIFT descriptor. Later, they generated pat-
terns with an associative rule mining algorithm, keeping the most discriminant features by 
a Pearson correlation analysis. The authors called this local feature extraction process local 
co-occurring patterns (LCPs). Finally, they classified five phytoplankton species with an 
SVM-based one-versus-one approach, obtaining an accuracy of 83%. They expressed how 
this result was better than the 72% accuracy obtained by Culverhouse et al. (2003a, 2003b). 
Nevertheless, this comparison was inappropriate because the authors here categorized five 
species instead of the six species used in the cited work. It is interesting to note how dur-
ing the heyday of SVMs, the authors reviewed thus far tried to achieve improved accuracy 
by researching new features instead of dealing with SVM parameters, which led to novel 
visual representations such as LCPs.

Unlike previous SVM frameworks, Al-Barazanchi et al. (2015) decided to substitute the 
time-consuming step of feature engineering with a CNN as a feature extractor. Hence, they 
fed a 10-layer CNN with resized images possessing 32x32 pixels, which were comprised 
of seven plankton categories captured with the SIPPER. Then, they trained this CNN until 
the maximum accuracy was achieved. From the obtained network, they employed each 
hidden layer as a feature for training another classifier. Thus, they separately evaluated a 
random forest and an SVM classifier with two different training sets, the original dataset 
and the same dataset extended via data augmentation (random image rotation), and with 
every layer as a feature vector. Finally, they obtained the best accuracy of 96.7% with the 
SVM classifier and the augmented training set using the features of hidden layer 1. With 
this technique, they outperformed other works’ accuracies in terms of classifying the same 
dataset (Tang et al. 2006; Zhao et al. 2005, 2009, 2010; Li et al. 2014). This was the second 
reviewed paper, after the work of Dollfus and Beaufort (1999), that replaced the cumber-
some feature extraction step with another original technique, allowing for the quick addi-
tion of new plankton species.

In a dataset, a plankton category contains dozens of images of the same species in mul-
tiple postures and positions. Nevertheless, a model requires even more images to attain 
a high classification accuracy. Some works, such as the previous study described above, 
employed data augmentation, which consists of artificially increasing the dataset’s size by 
applying various transformations to the already labelled data, such as rotation, translation 
and flipping. Cheng et al. (2020) presented a new method to make a classifier invariant to 
plankton rotation, thereby eliminating the need for data augmentation. They first described 
each image with a polar representation, which consisted of depicting each pixel in terms of 
its distance and angle to the centre of the image, converting the rotational problem into a 
translational task. Thus, there exist classifiers such as CNNs that are robust to small trans-
lations due to their internal architectures (pooling layers). The combination of polar repre-
sentations and their use in a CNN is a powerful technique for preventing the misclassifica-
tion of two similar plankton images when one appears rotated relative to the other. With 
this idea in mind, the authors inputted each original image into a CNN and inputted its 
polar representation into another CNN. They trained each CNN independently and merged 
the outputs of their fully connected layers as the features for a subsequent classifier: an 
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SVM (Fig. 8). Finally, the SVM obtained a 98% accuracy in terms of categorizing seven 
plankton species captured with PlanktonScope. This technique even outperformed a 
DenseNet CNN employing augmented data with 14 times the original size, which achieved 
96.5% accuracy. This work solved one of the major issues of underwater artificial vision 
applications: the misclassification of similar objects captured at different angles. While 
polar representations were employed for plankton in the past (see the first reviewed paper, 
Schlimpert et al. (1980)), the authors presented an advancement based on the properties of 
CNNs. This framework can be valuable if combined with other techniques that address the 
problem of unbalanced categories in a dataset.

4.5 � Semiautomated classification

Semiautomated classification aims to improve the accuracy of a classification model by 
combining the strengths of machines and human intelligence. Thus, a machine performs 
some tasks while a human performs other tasks, such as the initial grouping of data and the 
final classification decision. However, the requirement for human interaction is kept to a 
minimum. This approach is advantageous when labelled data are scarce, or new images are 
complex for a machine to label. This method’s application dates to the early 1990s when 
researchers needed to perform simple classification tasks, such as sorting images into cat-
egories, with some input and guidance from human operators.

Luo et  al. (2004b) updated their previous SVM classification approach (Luo et  al. 
2004a) by adding active learning. First, they built a multiclass SVM based on a training set 
and an unclassified set. Then, they ran the model, and an expert labelled the images from 
the unclassified set that were classified with the lowest confidence. Later, these manually 
labelled images were added to the training set and the model was retrained. This proce-
dure was iterated several times until the desired accuracy of 86.7% was achieved. The main 
advantage of this method was that it required four times fewer images to produce the same 
accuracy as that of the classifier built on a random training set, as shown in Fig. 1 of their 
paper. Additionally, the iterative retraining process saved valuable time for the operators 
because it only requested labels for the most challenging images. This method is a reliable 
way to build a plankton dataset.
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Grosjean et  al. (2004) tested different automatic classifiers to categorize 29 groups 
of zooplankton. These images were acquired with ZooScan (Gorsky et  al. 2009), a sys-
tem built to scan biological samples. Among the 15 tested classifiers (such as LDA, HC, 
ANN), they obtained the highest accuracy of 74.6% with a double-bagging LDA classifier 
employing 27 textural and shape features. Nevertheless, the authors thought they should try 
another approach to attain higher accuracy due to species intravariability and the likelihood 
of training set mislabelling. Thus, they implemented a system to manually retag the items 
classified with low accuracy, improving the performance to 85% with a speed of 10,000 
items in less than 5 s. The authors confirmed that human intervention is essential for man-
aging the complexity of categorizing many species.

Bell and Hopcroft (2008) assessed the open-source ZooImage software on Alaska zoo-
plankton to determine if it would be reliable for future research on salmon survival rates. 
ZooImage was based on the R project and the ImageJ software developed by the National 
Institutes of Health of the U.S. government to process biomedical images (Rasband 1997; 
Abràmoff et al. 2004). First, they scanned the samples using a conventional flatbed desktop 
scanner (Epson Perfection 4990). Then, the authors used the default ZooImage configura-
tion, which created vignettes of every particle (segmentation) found on the image for pos-
terior feature extraction. In this study, no information about the type of features employed 
by ZooImage was included. However, they probably consisted of textural and shape fea-
tures, as employed in other works using ZooImage (Table I, Fernandes et al. (2009)). Next, 
they created a training set and evaluated six classification algorithms: LDA, a recursive 
partitioning tree, K nearest neighbours, LVQ, an ANN, and a random forest (RF). They 
obtained the best accuracy of 81.7% with the RF algorithm by categorizing 53 species on 
field-collected samples, reducing the time required for quantitative analysis from hours to 
less than one hour. When they removed the discarded category, which accounted for more 
than 75% of all particles, the accuracy fell to 63.3%. Although they considered that the 
results were valuable, they anticipated that a semiautomated procedure was required to 
attain higher accuracies, expecting its inclusion in future software updates. As mentioned 
in this section’s reviewed works, the semiautomated method is regarded as a technique for 
improving the accuracy of any model.

Gorsky et al. (2010) developed a new software for plankton classification: the Plankton 
Identifier (PkID). They performed a classification sequence composed of ZooScan, Zoo-
Process and Plankton ID. First, the images were acquired with ZooScan, as mentioned in 
a previous work. Next, they employed ZooProcess software (based on ImageJ software) to 
preprocess, segment, and extract features. Then, they manually created a training set with 
30 categories, which was reduced to 20 due to the low accuracy shown on some categories 
in PkID cross-validation tests. Nevertheless, they kept some categories with low accuracy 
because of their ecological values. This reduction was made iteratively by merging catego-
ries with similar ecological values, resulting in higher accuracy (Fernandes et  al. 2009). 
This training set achieved an overall accuracy of 78% using an RF algorithm. According to 
the authors, this performance was inaccurate for ecological studies because it is driven pri-
marily by less abundant taxa. Thus, they decided to increase the number of categories from 
14 to 42, assisting the machine with labelling when needed and resulting in 100% accuracy. 
The authors clearly showed how this semiautomated classification method is the best way 
to obtain the highest accuracy in taxonomic research at the expense of taking more time 
than the fully automated approach.

A year later, Ye et al. (2011) presented a semiautomated method based on a Bayesian 
probabilistic model. A Bayesian probabilistic model represents uncertainty about events 
using probabilities; it starts with a prior premise about an event (prior probability) and 
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then updates that premise with new information (likelihood) to obtain a new probability 
(posterior probability). After performing ZooScan image acquisition, the authors manually 
categorized every object, building unbalanced and balanced training sets comprised of 28 
planktonic and nonliving categories. The balanced training set had the same number of 
images in each class. In contrast, the unbalanced class had different numbers of images in 
various classes. ZooProcess extracted features, and a naive Bayesian classifier was trained, 
obtaining a relationship between the posterior probability and cumulative recognition accu-
racy for each category. New images were automatically classified based on the posterior 
probabilities, obtaining accuracies of 69% and 68% for the unbalanced and balanced train-
ing sets, respectively. Second, over 31% of the images with the lowest confidence levels 
were manually reclassified by experts, obtaining 92% accuracy for both the unbalanced and 
balanced sets. This semiautomatic approach outperformed the method of Grosjean et  al. 
(2004), and it offered the possibility of providing the results for any aggregation level with 
a single calculation step due to the Bayesian probability model. As stated in Bayesian prob-
ability model theory, this technique seems ideal for plankton classification because it can 
handle category intravariability, missing data in unbalanced categories, and noisy datasets. 
However, as embodied in the previously reviewed works, a semiautomated approach can 
raise any model to its maximum accuracy.

Bochinski et al. (2019) applied a variation of active learning to zooplankton for the first 
time: cost-effective active learning (CEAL, Fig.  9 (Wang et  al. 2017)). Similarly, while 
active learning tries to maximize a model’s accuracy regardless of the required human 
effort, CEAL tries to avoid unnecessary human intervention, hence the “cost-effective" 
aspect of the name. First, images were segmented using Otsu thresholding, but only when 
rotation was needed because the authors found that segmentation techniques removed 
plankton details. Then, they employed a CNN based on AlexNet and tested this method 
with two databases comprised of four zooplankton species acquired with the In Situ Ich-
thyoplankton Imaging System (ISIIS) (Cowen and Guigand 2008). As a result, CEAL 
achieved the highest accuracy compared to the bare CNN and other active-learning meth-
ods; therefore, CEAL should be considered for future developments focused on semiauto-
mated approaches.

4.6 � Classification via convolutional neural networks

Convolutional Neural Networks (CNNs) are extensions of ANNs that can take an image 
as input. The name is derived from convolution, which is an operator that can merge two 
matrices by multiplying them. When correctly employed, convolutions can be used to 
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perform edge detection, image blurring or sharpening. The topology of a CNN consid-
ers multiple convolution layers to extract key image features. Interspersed with these 
layers, a CNN includes pooling layers, which are in charge of summarizing the features 
within a group of cells in the previous layer. Thus, the CNN also compresses the input 
data further. The final layer of the CNN serves as an input for an ANN to conduct pat-
tern classification. CNNs were first introduced in the late 1980s by Yann LeCun and 
his colleagues at the Pierre and Marie Curie University in Paris and AT &T Bell Labs. 
They have become state-of-the-art approaches in computer vision applications, includ-
ing image and video classification, object detection, and image generation.

Members of the reservoir laboratory (Ghent University - Belgium) won the US 
National Data Science Bowl (NDSB) competition by classifying 121 classes of plank-
ton acquired with the ISIIS (Dieleman et  al. 2015). First, they performed zero-mean 
unit-variance (ZMUV) normalization and data augmentation. ZMUV normalization is 
a common preprocessing step used in machine learning to ensure that the given data 
possess a consistent scale and have similar properties. The authors combined two differ-
ent rescaling strategies due to the species’ size diversity; one was based on image size, 
and the other was based on a fixed factor. For classification purposes, they employed a 
13-layer CNN structure inspired by OxfordNet and an ANN employing the most dis-
criminative conventional features, such as image sizes, image moments, and Haralick 
textures. Inspired by their previous participation in the Galaxy Challenge, they added 
cyclic pooling to the CNN to make the network more robust to the rotational plankton 
variations. Finally, they fused the results of these methods, obtaining a top-5 accuracy 
of over 98%, demonstrating their approach as a helpful tool for aiding experts in label-
ling tasks. They trained the models on Nvidia GPUs with convergence times from 24 
to 48 h, depending on the model parameters. As a drawback, CNNs tend to overfit due 
to their complexity and the number of parameters relative to the training data, resulting 
in poor performance on new images. The authors overcame this issue for classes with 
as few as 20 samples per category by applying dropout, weight decay, data augmenta-
tion, pretraining, pseudolabelling, and parameter sharing techniques. In addition, cyclic 
pooling has become so powerful that neural networks centred on it have emerged, such 
as CyCNN and R2CNN. This work proved that high accuracy is possible with few sam-
ples, contrary to what is conveyed in deep learning theory.

Dai et al. (2016) presented ZooplanktoNet, a framework based on a CNN to classify a 
13-class dataset acquired with ZooScan and provided by the Laboratoire d’Océanologie de 
Villefranche-sur-Mer, France. First, they normalized and augmented the dataset via rota-
tion, translation, rescaling, shearing, and flipping. Then, they tested four popular CNN 
architectures on an augmented and nonaugmented dataset as reference points: AlexNet, 
CaffeNet, VGGNet and GoogleNet. The models’ accuracies achieved on the augmented 
dataset were approximately 10% superior to those of the nonaugmented versions. Then, 
the authors chose AlexNet to continue their experiments but tested different optimiza-
tions for this CNN: different network depths, sizes and numbers of convolutional filters 
and the advantages of using local response normalization (LRN) and rectified linear units 
(ReLUs). LRN is a preprocessing step that is commonly used in CNNs to prevent overfit-
ting. A ReLU is an activation function that enables the learning of complex shapes and tex-
tures, improving overall model accuracy. The researchers obtained the best results with an 
11-layer network, using LRN and parametric ReLU (PReLU) activation functions instead 
of the widely known ReLU function. The PReLU function resolves the dying ReLU prob-
lem and performs better, as shown in this work. Thus, this architecture was denoted as 
ZooplanktoNet, achieving an accuracy of 93.7% versus the 91.3% of the standard AlexNet 
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at the cost of requiring ten more minutes of training time (a total of 38 min). The authors 
documented how a standard CNN such as AlexNet could be adjusted to obtain higher accu-
racies depending on the nature of the given dataset. Nonetheless, this model was designed 
specifically for images acquired with ZooScan, with unknown performance for images 
acquired by other means.

Xiu and Zuoying (2016) applied the residual CNN (ResNet, He et al. (2016)) that was 
recently developed by Microsoft Research to the 121 classes of plankton dataset employed 
in the 2015 National Data Science Bowl (NDSB) competition. The idea of this work was to 
overcome the accuracy decrease induced when increasing the depth of a CNN to 20 layers 
or more. After rescaling and augmenting the dataset, they trained three residual CNNs with 
depths of 19, 32 and 50 layers plus a VGG-19 network as a reference, keeping the remain-
ing parameters the same. The best network was the 32-layer network, with a top-5 accuracy 
of 95.8%. Although this accuracy was lower than the 98% achieved by the winning team in 
the NDSB competition, its computational cost was stunning, running 6.5x faster at a rate of 
0.1 s per test set image. In general, ResNets perform better than traditional CNNs because 
they can train much deeper networks without incurring the vanishing gradient problem. 
The vanishing problem has been overcome by allowing the gradients to bypass one or more 
layers (as shown in Fig.  4 of their paper); this new internal structure is called “residual 
connection”. Moreover, during inference, ResNets are expected to run slower than tradi-
tional CNNs because they must perform calculations with both the original and residual 
inputs. They also use more layers, increasing the required computation time. Contrary to 
the above, the authors achieved a lower accuracy and a faster inference time compared 
to the VGG-19 network used as a reference. Perhaps this behaviour was due to the small 
dataset size, which the authors blamed for the result obtained in the 50-layer network test.

One year later, Dai et al. (2017) presented a classification system composed of three 
CNNs in parallel. The idea was to take advantage of textural features that describe dif-
ferences when shapes do not and vice versa. To extract shape information, they first 
removed noise, smoothed shapes, applied the Scharr operator and optimized the con-
trast. To obtain texture information, they employed a Canny edge detector. Then, three 
CNNs were arranged in parallel; the first was fed with shape features, the second was 
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directly fed with the images, and the third was given textures, converging into a soft-
max function (final layer) by a pyramid structure, as shown in Fig. 10. They classified a 
dataset containing 30 plankton classes acquired with the Imaging FlowCytobot (IFCB, 
Olson and Sosik (2007)). After completing several tests, they obtained maximum accu-
racies of 95.8% when employing networks based on AlexNet and 96.3% when using 
GoogleNet. AlexNet is an 8-layer CNN introduced in 2012 by researchers at the Univer-
sity of Toronto. It won the ImageNet Large Scale Visual Recognition Challenge (ILS-
VRC) in 2012 with a top-5 error rate of 15.3%. GoogleNet is a 22-layer CNN introduced 
in 2014 by researchers at Google. It won the ILSVRC in 2014 with a top-5 error rate of 
6.6%. All tests were run on four 6-GB Nvidia GTX 980Ti GPUs. Although the authors 
tried to employ as much image information as possible, they could barely achieve a 1% 
accuracy improvement over a single CNN (either AlexNet or GoogleNet) fed with only 
the original images as input, as shown in Tables 2 and 3 of the original paper. Thus, this 
method runs contrary to the trend of avoiding complicated feature calculations, showing 
no benefits.

Cui et al. (2018) presented an alternative approach to that used in the previous work. 
The authors also combined original images with shape and textural features as classi-
fier information. However, they obtained shape features by applying Gaussian low-pass 
filtering and textural features by applying Gaussian high-pass filtering followed by loga-
rithmic image enhancement. Then, they merged the shape features, the texture features, 
and the original image into a more complex feature representation using a concatenation 
layer. Finally, the authors input the merged vector into a single CNN based on AlexNet 
(Fig. 11). This approach obtained 96.6% accuracy, outperforming the framework based 
on AlexNet from Dai et  al. (2017) by 0.8%. Although this procedure did not achieve 
a noticeable accuracy improvement, its simplicity compared to the previous method 
makes it preferable for future framework developments.

Al-Barazanchi et al. (2018) applied a CNN classifier to the same dataset employed 
in past works comprising seven plankton species (Tang et  al. 2006; Zhao et  al. 2005, 
2009, 2010; Li et  al. 2014; Al-Barazanchi et  al. 2015). After resizing all the dataset 
images, they fed the images into an 18-layer CNN (based on VGGNet), achieving 98.2% 
accuracy on the testing dataset. Their CNN outperformed the best result from previous 
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works, which achieved 96.7% accuracy using a 10-layer CNN for feature extraction and 
an SVM as the classifier (Al-Barazanchi et al. 2015). This paper demonstrated how the 
unique use of a deep CNN outperforms any other method without data augmentation. 
However, it would have been interesting to compare this architecture with their previous 
work but instead using a CNN with the same depth as the feature extractor.

Luo et  al. (2018) improved the parameters of the spatially sparse CNN formerly 
employed in the 2015 NDSB competition, which finished third in the final rankings. In a 
traditional CNN, each neuron in a layer receives input from all the neurons of the previous 
layer. In a spatially sparse CNN, each neuron in a layer receives input from a subset of the 
previous layer’s neurons through a process called pruning. With these connection reduc-
tions, the network first learns the most important features. Then, it continues to learn more 
complex features with less important connections. Researchers created this type of CNN to 
recognize Chinese characters, where strokes were considered sparse pixels and the back-
ground was omitted for processing purposes. In this work, the authors considered a plank-
ton image to be similar to a handwritten character, where most of it was background. In 
this way, a spatially sparse CNN could learn faster, with less overfitting, and with a lower 
computational cost than that of a dense CNN. They classified the 2015 NDSB competi-
tion dataset by regrouping the training set into 37 classes according to ecological signifi-
cance. After conducting contrast normalization and discarding noisy and low-confidence 
images, data augmentation was performed on the rare classes via rotation, skewing, and 
scaling. Their 13-layer spatially sparse CNN obtained an F1-score of 0.881 and a precision 
of 90.7% on nonrare biological groups (23 classes), taking approximately 24 h for training 
and 165 h for prediction on new images using 1536 Nvidia CUDA cores. The result was 
quite impressive, considering the dataset size of 23.4 million images. However, this model 
may not be suitable for general plankton images, as they have high variability in their tex-
ture and illumination conditions, requiring more connections among neurons to process 
complex images. Moreover, this technique may soon become obsolete with the emergence 
of colour plankton databases, which present high degrees of variability.

Soh et al. (2018) presented a CNN architecture capable of identifying individual plank-
ton in images with homogeneous clumping, heterogeneous interspersion or both. Homo-
geneous clumping occurs when plankton of the same species cluster together homogene-
ously. Heterogeneous interspersion occurs when different plankton species are randomly 
distributed in a sample. These phenomena can affect the accuracy of plankton classifica-
tion. Thus, the authors developed a 19-layer CNN based on the “You Only Look Once" 
(YOLO) architecture, which was capable of identifying and categorizing multiple objects 
in an image using just one computation. After conducting manual labelling, they per-
formed data augmentation: six geometric distortions and two-pixel value modifications. 
Next, they applied this classifier to 18 species of plankton, detecting 100% of the valida-
tion set with an average intersection of union (IoU) of 86%. The IoU is a metric for object 
detection algorithms that measures the overlap between the predicted box and the ground-
truth bounding box for an object in an image. This model took 20 h for training, running 
at 50 frames per second on the test set using one Nvidia GTX980. Due to the nature of the 
classifier, this method is a perfect fit for coping with scattered plankton, but distinguishing 
between clumped plankton and individuals is a different challenge, perhaps requiring extra 
preprocessing steps not covered in this work.

Lumini and Nanni (2019) tested a classification approach consisting of the fusion of differ-
ent CNNs. They tested three plankton datasets on each of the following pretrained networks: 
AlexNet, GoogleNet, InceptionV3, VGG16, VGG19, ResNet50, ResNet101, and DenseNet. 
A pretrained network is a model that has already trained on a large dataset, the ImageNet 
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database in this case. Then, the parameters of these models were adapted to the new dataset. 
For this task, the authors employed the sequential floating forward selection (SFFS) feature 
picking method, which selects the most informative features from a pretrained models that 
are useful for a new dataset. The retraining step was performed under three different strate-
gies: one round of tuning (1R), two rounds of tuning (2R) and preprocessing tuning (PR). 
1R consisted of fine-tuning a pretrained model with a new dataset in a single round, 2R uses 
two rounds, and PR involves fine-tuning a preprocessed new dataset in a single round. For 
PR, the authors implemented preprocessing by applying data augmentation with four tech-
niques: gradient, orient, local binary pattern, and local ternary pattern transformations. The 
three tested datasets were already used in past studies; they were acquired with the IFCB, 
ZooScan, and ISIIS. The best single pretrained model was DenseNet, but the highest accuracy 
was obtained with an ensemble method that consisted of employing the sum rule among the 
eight previous networks using one round and two rounds of fine-tuning, as shown in Table 6 
of their paper (Fus_2R + Fus_1R). In a comparison, this approach obtained an F-measure of 
0.953 versus the 0.9 achieved by Zheng et al. (2017) on the same IFCB dataset. They pub-
lished another study that outperformed this ensemble’s accuracy. It employed the SFFS feature 
selection approach but instead selected which classifier to add to the ensemble in each itera-
tion based on its performance (Lumini et al. 2019). Thus, the SFFS ensemble consisted of 11 
classifiers, obtaining an F-measure of 0.958 on the same IFCB dataset. As in the previously 
reviewed works, the authors revealed how an ensemble classifier could outperform individual 
CNNs. The use of pretrained models could be a powerful time-saving technique when the 
new target is a high-dimensional and complex dataset. Nevertheless, the complexity of run-
ning several networks to fuse their results later could be challenging. Further research may be 
needed to determine if the time required to implement this ensemble technique is shorter than 
that required to optimize a single CNN with layers adapted to the nature of the input images.

Li et al. (2021c) presented a new model that addressed two problems encountered in plank-
ton classification: imbalanced categories and the loss of subtle features by a CNN during train-
ing. Imbalanced categories frequently occur in datasets for plankton classification tasks, where 
rare or poorly known taxa exist, negatively affecting a model’s accuracy. Retaining subtle fea-
tures, such as the shape of a head or the presence of appendages, is crucial for accurately 
classifying different plankton species. The authors solved the imbalance issue by creating fake 
images in the rare taxa categories using CycleGAN, a generative adversarial neural network 
that generates new images similar to those employed as inputs and described by Yann LeCun, 
Chief Artificial Intelligence Scientist at Facebook, as “the most interesting idea in the last ten 
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years in machine learning" (LeCunn 2017). Then, the authors proposed a densely connected 
structure based on the YOLOv3 model to better capture the subtle features of plankton. In 
a densely connected structure, each layer is connected to every other layer, rather than just 
the previous and successive layers (as in traditional CNNs), allowing for a more robust rep-
resentation of the input data. The authors applied this method to classify the IFCB dataset, 
obtaining an average precision of 97.1% for eight classes. This method outperformed others, 
with a detection time of 51 ms per testing image, which is suitable for real-time applications. 
Although the experiments were run in a desktop environment (Nvidia Titan RTX GPUs), 
they successfully integrated this method into a low-power Jetson Nano board, looking for 
its implementation in autonomous underwater vehicles (AUVs). This latest work marked a 
turning point in plankton image classification, presenting a model that not only offers high 
accuracy, but is also likely to be seen soon in an in situ device performing real-time plankton 
classification.

5 � Conclusions and future work

Scientists began operating machines produced in other fields to quantify and classify plank-
ton using pattern recognition techniques. The research started with Quantimet (IMANCO 
1970), a system that was initially designed for analysing steel and then employed in multi-
ple areas from materials to life sciences. Similar hardware but specifically made to digitize 
plankton specimens was developed after.

As Fig. 12 shows, early systems employed linear classifiers to group plankton by their 
shape features, but these techniques were still unable to achieve species-level identification 
due to poor image quality. In Europe, knowledge-based classifiers followed for plankton 
grouping, reaching a lower accuracy than linear discrimination but classifying twice the 
number of groups. In these studies, some authors removed appendages to ease the feature 
extraction process and separated the specimens connected by antennae or swimming legs. 
In the early nineties, ANNs were introduced to categorize plankton, achieving similar per-
formance to that of taxonomists when combining shape features with texture features for 
the first time in field-collected specimens. Some authors focused on which features resulted 
in higher accuracy instead of fine-tuning their network parameters, and others combined 
the results of several ANNs running in parallel. SVMs were debuted in plankton classifica-
tion during the same time period, using local features and CNN-like feature generators and 
outperforming past techniques. In addition to these approaches, researchers started to assist 
automatic classifiers with manual labelling for specimens with lower accuracy, achiev-
ing better results. Nonetheless, including a discarded category was a simple way to obtain 
these promising results (Hu and Davis 2005; Bell and Hopcroft 2008).

Recently, CNNs have defined a new era in image classification, shifting the focus of 
researchers from feature engineering to network parameter optimization. These networks 
run faster and obtain better results than those produced using a different classifier on the 
same dataset, as shown in the literature. The state-of-the-art accuracy achieved by a CNN 
for a 4-121 class problem exceeded 90%. Authors used existing architectures for plankton 
classification and produced new models adapted to this specific issue with parallel configu-
rations or internal CNN structure modifications. Plankton recognition has lagged behind 
other applications, but Asian authors applied the YOLO architecture to plankton detec-
tion; this is the most popular object detection algorithm, which is able to process images in 
real time and with maximum accuracy compared to any other network developed to date. 
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Eventually, seventy years after Nishizawa et al. (1954) performed direct underwater obser-
vations, research groups became close to embedding high-end algorithms into underwater 
systems to categorize plankton in near real-time for the first time. Perhaps, the answer to 
complete plankton identification during this century will be a multipurpose system com-
posed of acoustics, cameras, and DNA barcoding, where artificial vision would play a key 
role.

Future research on plankton image classification should focus on generating new data-
sets comprising high-quality colour plankton images, such as the DYB-PlanktonNet data-
set. For this purpose, new tools and equipment will be necessary, such as the new in situ 
underwater imaging system developed by the Shenzhen Institute of Advanced Technology, 
Chinese Academy of Sciences (Li et al. 2021a). Colour images offer more information to 
classifiers, making it easier to achieve higher accuracies. A second step should focus on 
integrating state-of-the-art classifiers into low-power, high-performance dedicated hard-
ware for classifying plankton in situ and in real time. The above strategies, together with 
advanced energy harvesting modules, will enable the automatic monitoring of plankton 
worldwide at different depths under an international agenda, such as the Argo program 
(Scripps Institution of Oceanography 2000). The Argo program is an international project 
that collects ocean parameters between the bottom of the ocean and the ocean’s surface 
through approximately 4000 autonomous robotic instruments. If such a device is devel-
oped, it would be a game changer in terms of studying and understanding plankton popula-
tions, potentially revolutionizing our understanding of the ocean and its role in the climate 
system.
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