Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121725
Title: Existence of solution of infinite systems of singular integral equations of two variables in C(I x I, l(p)) with I = [0, T], T > 0 and 1 < p < infinity using Hausdorff measure of noncompactness
Authors: Das, A.
Hazarika, B.
Sadarangani Sadarangani, Kishin Bhagwands 
UNESCO Clasification: 120219 Ecuaciones diferenciales ordinarias
Keywords: Measure of noncompactness
Infinite system of singular integral equation
Meir-Keeler condensing operators
Fixed point
Issue Date: 2022
Journal: Filomat 
Abstract: In this article, we discuss the solvability of infinite systems of singular integral equations of two variables in the Banach sequence spaces C(I × I, ℓp) with I = [0, T], T > 0 and 1 < p < ∞ with the help of Meir-Keeler condensing operators and Hausdorff measure of noncompactness. With an example, we illustrate our findings.
URI: http://hdl.handle.net/10553/121725
ISSN: 0354-5180
DOI: 10.2298/FIL2209013D
Source: Filomat, v. 36 (9), p. 3013–3023, (2022)
Appears in Collections:Artículos
Adobe PDF (230,96 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.