Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121725
Title: Existence of solution of infinite systems of singular integral equations of two variables in C(I x I, l(p)) with I = [0, T], T > 0 and 1 < p < infinity using Hausdorff measure of noncompactness
Authors: Das, A.
Hazarika, B.
Sadarangani Sadarangani, Kishin Bhagwands 
UNESCO Clasification: 120219 Ecuaciones diferenciales ordinarias
Keywords: Measure of noncompactness
Infinite system of singular integral equation
Meir-Keeler condensing operators
Fixed point
Issue Date: 2022
Journal: Filomat 
Abstract: In this article, we discuss the solvability of infinite systems of singular integral equations of two variables in the Banach sequence spaces C(I × I, ℓp) with I = [0, T], T > 0 and 1 < p < ∞ with the help of Meir-Keeler condensing operators and Hausdorff measure of noncompactness. With an example, we illustrate our findings.
URI: http://hdl.handle.net/10553/121725
ISSN: 0354-5180
DOI: 10.2298/FIL2209013D
Source: Filomat, v. 36 (9), p. 3013–3023, (2022)
Appears in Collections:Artículos
Adobe PDF (230,96 kB)
Show full item record

Page view(s)

76
checked on Oct 31, 2024

Download(s)

14
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.