Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121614
Título: Discrimination between smiling faces: Human observers vs. automated face analysis
Autores/as: Del Líbano, Mario
Calvo, Manuel G.
Fernández Martín, Andrés 
Recio, Guillermo
Clasificación UNESCO: 610604 Análisis experimental de la conducta
Palabras clave: Action units
Emotion
FACET
Facial expression
Smile
Fecha de publicación: 2018
Publicación seriada: Acta psychologica 
Resumen: This study investigated (a) how prototypical happy faces (with happy eyes and a smile) can be discriminated from blended expressions with a smile but non-happy eyes, depending on type and intensity of the eye expression; and (b) how smile discrimination differs for human perceivers versus automated face analysis, depending on affective valence and morphological facial features. Human observers categorized faces as happy or non-happy, or rated their valence. Automated analysis (FACET software) computed seven expressions (including joy/happiness) and 20 facial action units (AUs). Physical properties (low-level image statistics and visual saliency) of the face stimuli were controlled. Results revealed, first, that some blended expressions (especially, with angry eyes) had lower discrimination thresholds (i.e., they were identified as “non-happy” at lower non-happy eye intensities) than others (especially, with neutral eyes). Second, discrimination sensitivity was better for human perceivers than for automated FACET analysis. As an additional finding, affective valence predicted human discrimination performance, whereas morphological AUs predicted FACET discrimination. FACET can be a valid tool for categorizing prototypical expressions, but is currently more limited than human observers for discrimination of blended expressions. Configural processing facilitates detection of in/congruence(s) across regions, and thus detection of non-genuine smiling faces (due to non-happy eyes).
URI: http://hdl.handle.net/10553/121614
ISSN: 0001-6918
DOI: 10.1016/j.actpsy.2018.04.019
Fuente: Acta psychologica [ISSN 0001-6918], v. 187, p. 19-29, (Junio 2018)
Colección:Artículos
Adobe PDF (1,67 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.