Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/120769
Title: | Earth-Moon Barycentre Excursions and Anomalous Quaternary Sea Level Highstands | Authors: | Meco Cabrera, Joaquín Francisco Sendino, Consuelo Lomoschitz Mora-Figueroa, Alejandro Núñez Ordóñez, Antonio Huertas, María José Betancort, Juan F. |
UNESCO Clasification: | 251090 Geología marina 250707 Tectónica 210410 La luna 250706 Geofísica de la masa sólida terrestre |
Keywords: | Earth-Moon Barycentre Lunar Declination Sea-Level Canary Islands Neogene, et al |
Issue Date: | 2022 | Journal: | International Journal Of Geosciences | Abstract: | Plate tectonics is driven by Earth-Moon barycentre shifts in the lower mantle. The eastern Canary Islands have geographic and geological conditions derived from the movements of the Central American plates. Some features of these islands are influenced by the rotation of the Earth from west to east in the evolution of the marine currents that surround them and the opening of the North Atlantic to the North Pole with little dependence of the glacial isostatic adjustment (GIA). In addition, their position with respect to the Tropic of Cancer and the African continent affect the north-south and east-west climatic change dynamics and their tectonic stability respectively. Dated lavas contain marine and aeolian deposits and some of the Pleistocene marine deposits indicate higher sea level in cooler circumstances, which is anomalous. Relating those marine deposits produced during the warmest interglacial, the last interglacial and the Holocene with their equivalents in the Southern Hemisphere, they reflect shifts in the barycentre. Thanks to Holocene radiocarbon, topographic and day length data and alkenone temperature, we describe a mechanism by which the oscillation of the Moon’s inclination (and declination) reaches extreme values (14º and 34º; about 4.9º more than current values) approximately every 1450 years. These values occur when there is a harmonic distortion in surface areas of the Earth’s crust as response associated with oscillations in the displacements of the barycentre of the Earth-Moon system. As the declination influences the movement of oceanic waters, there is also a relationship with the Bond Events of the North Atlantic, of unknown cause until now. | URI: | http://hdl.handle.net/10553/120769 | ISSN: | 2156-8359 | DOI: | 10.4236/ijg.2022.138034 | Source: | International Journal Of Geosciences [ISSN 2156-8359], v. 13 (8), 627-656, (Agosto 2022) |
Appears in Collections: | Artículos |
Page view(s)
132
checked on Nov 30, 2024
Download(s)
38
checked on Nov 30, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.