Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/120767
Título: | Extending the kinematic theory of rapid movements with new primitives | Autores/as: | Ferrer Ballester, Miguel Ángel Díaz Cabrera, Moisés Quintana Hernández, José Juan Carmona Duarte, María Cristina Plamondon, Réjean |
Clasificación UNESCO: | 3313 Tecnología e ingeniería mecánicas | Palabras clave: | Kinematic theory of rapid movements Spatiotemporal sequences Sigma-Lognormal model Human motor control model Biometrics, et al. |
Fecha de publicación: | 2023 | Proyectos: | Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico | Publicación seriada: | Pattern Recognition Letters | Resumen: | The Kinematic Theory of rapid movements, and its associated Sigma-Lognormal, model 2D spatiotemporal trajectories. It is constructed mainly as a temporal overlap of curves between virtual target points. Specifically, it uses an arc and a lognormal as primitives for the representation of the trajectory and velocity, respectively. This paper proposes developing this model, in what we call the Kinematic Theory Transform, which establishes a mathematical framework that allows further primitives to be used. Mainly, we evaluate Euler curves to link virtual target points and Gaussian, Beta, Gamma, Double-bounded lognormal, and Generalized Extreme Value functions to model the bell-shaped velocity profile. Using these primitives, we report reconstruction results with spatiotemporal trajectories executed by human beings, animals, and anthropomorphic robots. | URI: | http://hdl.handle.net/10553/120767 | ISSN: | 0167-8655 | DOI: | 10.1016/j.patrec.2023.02.021 | Fuente: | Pattern Recognition Letters [ISSN 0167-8655], v. 167, p. 181-188, (Marzo 2023) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 22-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 22-dic-2024
Visitas
183
actualizado el 01-nov-2024
Descargas
97
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.