Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/120767
Title: Extending the kinematic theory of rapid movements with new primitives
Authors: Ferrer Ballester, Miguel Ángel 
Díaz Cabrera, Moisés 
Quintana Hernández, José Juan 
Carmona Duarte, María Cristina 
Plamondon, Réjean
UNESCO Clasification: 3313 Tecnología e ingeniería mecánicas
Keywords: Kinematic theory of rapid movements
Spatiotemporal sequences
Sigma-Lognormal model
Human motor control model
Biometrics, et al
Issue Date: 2023
Project: Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico 
Journal: Pattern Recognition Letters 
Abstract: The Kinematic Theory of rapid movements, and its associated Sigma-Lognormal, model 2D spatiotemporal trajectories. It is constructed mainly as a temporal overlap of curves between virtual target points. Specifically, it uses an arc and a lognormal as primitives for the representation of the trajectory and velocity, respectively. This paper proposes developing this model, in what we call the Kinematic Theory Transform, which establishes a mathematical framework that allows further primitives to be used. Mainly, we evaluate Euler curves to link virtual target points and Gaussian, Beta, Gamma, Double-bounded lognormal, and Generalized Extreme Value functions to model the bell-shaped velocity profile. Using these primitives, we report reconstruction results with spatiotemporal trajectories executed by human beings, animals, and anthropomorphic robots.
URI: http://hdl.handle.net/10553/120767
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2023.02.021
Source: Pattern Recognition Letters [ISSN 0167-8655], v. 167, p. 181-188, (Marzo 2023)
Appears in Collections:Artículos
Adobe PDF (2,37 MB)
Show full item record

SCOPUSTM   
Citations

1
checked on Dec 22, 2024

WEB OF SCIENCETM
Citations

1
checked on Dec 22, 2024

Page view(s)

183
checked on Nov 1, 2024

Download(s)

97
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.