Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/120674
Título: | Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach | Autores/as: | Greiner Sánchez, David Juan Montero García, Gustavo Winter Althaus, Gabriel |
Clasificación UNESCO: | 12 Matemáticas | Palabras clave: | Evolutionary Algorithms Sparse Matrices Reordering |
Fecha de publicación: | 2006 | Conferencia: | ERCOFTAC 2006 | Resumen: | In this work, it is introduced a methodology for solving the problem of sparse matrices reordering using evolutionary algorithms, which can be handled as a combinatorial NP-class problem. Evolutionary algorithms are more flexible techniques that allow this reordering considering location and also values of the non zero entries of the matrix. Different fitness functions are proposed and studied comparatively. Moreover, the obtained results are compared with a classical procedure, the inverse Cuthill-McKee ordering. Finally, a seeded approach that combines both strategies, whose results outperform the previous ones, is introduced | URI: | https://accedacris.ulpgc.es/handle/10553/120674 | Fuente: | ERCOFTAC 2006: Design Optimisation, Methods and Applications |
Colección: | Actas de congresos |
Visitas
23
actualizado el 30-mar-2024
Descargas
48
actualizado el 30-mar-2024
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.