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ABSTRACT 

In this work, it is introduced a methodology for solving the problem of sparse matrices 
reordering using evolutionary algorithms, which can be handled as a combinatorial NP-class 
problem. Evolutionary algorithms are more flexible techniques that allow this reordering 
considering location and also values of the non zero entries of the matrix. Different fitness 
functions are proposed and studied comparatively. Moreover, the obtained results are compared 
with a classical procedure, the inverse Cuthill-McKee ordering. Finally, a seeded approach that 
combines both strategies, whose results outperform the previous ones, is introduced 

1 INTRODUCTION 

Sparse matrices are those matrices which have the majority of their entries as zeros, 
being the non-zero values a minimum proportion of the total. Their use is frequent and 
well spread in many fields of science and engineering. As an example, discrete 
modelling with finite elements or finite volumes in engineering problems follows to a 
linear system of equations Ax=b, frequently governed by a sparse matrix. The resolution 
of this system can be handled with direct (Gauss, LU-factorization, etc.) or iterative 
(conjugate gradient, generalized minimal residual GMRES, biconjugate gradient 
stabilized Bi-CGSTAB, etc.) methods, depending on the problem characteristics. Either 
the case, the reordering of the entry positions often provides advantages. In direct 
methods, when the matrix bandwidth is reduced via reordering, the ‘fill in’ effect (zero 
entries filling before factoring procedure) is diminished. In iterative methods, the effect 
of certain preconditioners can be improved via reordering [4,5,18]. This reordering 
problem belongs to the nondeterministic polynomial time NP-class combinatorial 
problems.  

Classical methods have been developed for this purpose, see e.g. [17]. However, in 
recent years, bio-inspired and heuristic methods have been proposed, such as tabu 
search [20] or simulated annealing [16]. The sparse matrix reordering problem has been 
faced previously also as a graph partitioning problem. In this way, classical methods 
have been proposed, such as [12], or [6] for parallel computers; but also evolutionary 
methods, such as [14] in single objective optimization, or [3] considering multiobjective 
optimization.  

Here we introduce a methodology with evolutionary algorithms for sparse matrix 
reordering, describing the genetic operators, the codification and various fitness 
functions proposed for a suitable performance. Results are compared with a classical 
method: the inverse Cuthill-McKee reordering [7,8]. Moreover, a seeded approach is 
exposed, being its results capable of outperform the previous ones. 



The organization of this paper is described as follows: First, the sparse matrix 
reordering problem is handled in Section 2, describing our chromosome codification, 
some evolutionary considerations, and the considered fitness functions. Section 3 
describes the experimental results, focusing in the evolutionary and seeded approaches, 
and their discussion. Finally the paper ends with the conclusions section. 

2 SPARSE MATRICES REORDERING PROBLEM 

The resolution of the sparse matrices reordering problem using evolutionary algorithms 
requires a suitable chromosome codification and the appropriate definition of the fitness 
function. Both aspects are described in the following subsections, as well as some 
evolutionary considerations. 

2.1 CODIFICATION OF THE CHROMOSOME 

The variable information among candidate solutions (what differentiates one solution 
from another) is the only knowledge required to be coded. In addition, this information 
should be structured in such a way that the information interchange between solutions 
using crossover or its modification using mutation does not produce an infeasible 
solution.  

The used matrix storage is a compact storage, based in the compressed schema of 
Radicati [21], where the dynamic memory assignment characteristics of C++ language 
are considered. Using a compact storage in a sparse matrix is advantageous due to the 
fact, that only a few number of its values are non-zeros. The sparse matrix (A) is 
defined through two matrices called position matrix (PA) and value matrix (VA). The 
position matrix PA stores by rows the position of the non-zero values of each file of the 
matrix; except the first value, that corresponds to the whole number of non-zero values 
contained in the PA row. The value matrix VA contains the matrix values, storing in the 
first value of each row the main diagonal value, and the rest of the values correspond to 
the non-zero values whose positions are defined in the position matrix.  

Each candidate solution (one chromosome) is representative of one defined ordering 
corresponding to the matrix A. A naïve codification of the chromosome could be a 
compact matrix with a defined ordering. But considering that only the variable or 
different information among solutions is required to be coded in the chromosome, it 
could be limited exclusively to a vector with so many elements as the dimension of 
sparse matrix A, and defining the ordering of its nodes. So, each chromosome is 
constituted by the natural numbers from 1 to n, being n the dimension of matrix A, and 
in a random ordering. This ordering defines the permutation of rows of position and 
value matrices (PA and VA), as well as the interior permutations of the position values 
of each row, in such a way that allows to define the new matrix in compact storage (also 
the values of the independent term vector should be permuted in the same ordering, in 
order that the solution of the original lineal system would not be altered). Considering 
an original consecutive ordering of the matrix from 1 to n, then with a sparse matrix 
dimension of four, an example of matrix reordering is represented in figure 1. It 
includes PA and VA matrices and chromosome coding. 
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Fig. 1. Original A, PA, VA, reordered matrices A’, PA’, VA’ and their corresponding chromosome codifications 

Using this codification, the chromosome treatment is analogous to that corresponding in 
well known evolutionary problems, such as simple scheduling [13], or the classical 
travelling salesman problem [15], where a set of cities or control points should be 
covered in the shortest possible path, and the chromosome can be expressed as the 
ordering of the cities through the route.  

2.2 EVOLUTIONARY CONSIDERATIONS 

The used crossover and mutation operators are position-based crossover and order-
based mutation [19].  

{ }4,3,2,11=SolutionCandidate { }1,2,3,42 =SolutionCandidate  

{ }1,0,1,0=MaskCrossover  

{ }1,4,3,21=SolutionCandidateNew { }4,1,2,32 =SolutionCandidateNew  

Fig. 2. Crossover example 

The position-based crossover consists in fixing by a uniform and random crossover 
mask, those positions that will be interchanged by two parents. To maintain the 
coherency in the chromosome representation, the remaining positions are maintained in 
the original relative ordering in the chromosome, and they are filled in the remaining 
gaps. An example of the procedure is showed in figure 2 for matrix A, where a 1 in the 
mask means crossover of the position and a 0 means no crossover of the position.    

The order-based mutation acts by a mutation mask which contains the positions to 
mutate. It is considered a uniform mask, where every position has the same probability 
to be altered. Each mutated value interchanges its position with other randomly 
determined gene. An example of the procedure is showed in figure 3 for matrix A, 
where the randomly mutated position described by the mask is the fourth.  

{ }1,4,3,2=Chromosome { }0,0,1,0=MaskMutation { }3,4,1,2=SolutionNew  

Fig. 3. Mutation example 

The description of the evolutionary algorithm used is as follows. It is used a steady-
state genetic algorithm with duplicates elimination, where two solutions are substituted 
each generation, deleting in the insertion the two worst solutions. The selection is 
performed through stochastic universal sampling (SUS) using a ranking ordering for the 
probabilities definition. A population of 50 individuals is considered, being the 
crossover rate of 100% and the stop criterion a total of 6.106 fitness function 



evaluations. The selected mutation rate is of 0.4%, which gives the best results from a 
set of rates tested among 0.2%, 0.4%, 0.8% and 1.5% in the presented test case.  

2.3 ABOUT THE FITNESS FUNCTION 

Various fitness functions have been considered here for minimizing when solving the 
sparse matrix reordering problem. Each of them constitutes the resolution of a different 
reordering problem, but (excluding the fifth fitness function) with the same aim of 
minimizing the semi-bandwidth of the matrix. They are compared in the results section, 
where it is shown how its election conditions the final obtained solution. The proposed 
fitness functions are:   
 
Fitness Function 1. The first fitness function considered is the sparse matrix semi-
bandwidth: F1 = max ׀i – j׀, aij ≠ 0 (the semi-bandwidth definition is the maximum 
number of intermediate positions that separate the further term of a row from the 
principal diagonal of the matrix).  
 
Fitness Function 2. The second fitness function considered corresponds with the total 
size of the whole sparse matrix envelope: F2 =∑i (max j – min j), aij ≠ 0  (the envelope 
definition is the total number of matrix positions which is covered among its non-zero 
entries by rows or by columns, being in symmetric matrix profiles both values 
equivalents).  
 
Fitness Function 3. The third fitness function is evaluated as follows: For each non-
zero value of the matrix, the number of positions that is separated from the principal 
diagonal is calculated. This value is raised to some power, in order to discriminate more 
favourably those terms that are further from the principal diagonal of the matrix. The 
whole sum of this evaluation represents the value of the fitness function for a particular 
ordering of the sparse matrix: F3 =∑i∑j ׀i – j1.4׀, aij ≠ 0. Here each term is raised to the 
power of 1.4. 
 
Fitness Function 4. This fourth fitness function is a little variation of the previous one, 
where each term is raised to the power of 3, increasing the discrimination effect: F4 
=∑i∑j ׀i – j3׀, aij ≠ 0. 
 
Fitness Function 5. For each non-zero value of the matrix, the number of positions that 
is separated from the principal diagonal is calculated, and this distance is, in addition, 
multiplied by the own value of the term. The whole sum of this evaluation represents 
the value of the fitness function for a particular reordering of the sparse matrix: F5 
=∑i∑j aij׀i – j׀ , aij ≠ 0. This fifth fitness function is focused mainly to the iterative 
resolution methods, more concisely to increase the efficiency of the preconditioners in 
iterative solvers, where the concentration of the terms of higher value around the 
principal diagonal can favour the convergence of the resolution. The possibility of 
including the own value of each term in the matrix reordering procedure is a tool that 
evolutionary methods provide, but is not considered in the classical ones.  
 
Fitness Function 6. This sixth fitness function is a little variation of the previous one, 
where the term corresponding to the position separation is raised to the power of two: 
F6 =∑i∑j aij׀i – j2׀, aij ≠ 0, increasing the importance of the distance to the principal 
diagonal. 



3 RESULTS AND DISCUSSION 

3.1 THE EVOLUTIONARY APPROACH 

The test case considered is a sparse matrix of dimension 441, belonging to a convection-
diffusion problem handled by finite elements. Their non-zero values are represented as 
points in left side of figure 4 (x-axis and y-axis represent the row and column positions 
respectively, and a point shows a non-zero value). This original matrix is included in the 
initial population in every case.  

Final results are compared with the inverse Cuthill-McKee reordering, which is 
graphically shown in right side of figure 4. The results numerical expressions are shown 
in table 1, where each reordering solution has the value of every considered fitness 
function. The values that have guided each solution are represented in bold type. These 
reorderings are graphically represented in figure 5. 

As it can be inferred from the obtained results, considering the semi-bandwidth as 
fitness function (first considered) does not seem to be an appropriate election for 
obtaining matrices with reduced profile. The semi-bandwidth is reduced from 428 to 
328, but is very far from the value obtained with the inverse Cuthill-McKee ordering. 
This disappointing behaviour is understandable considering that the semi-bandwidth as 
fitness function is not a progressive indicator. It covers many different solutions without 
discriminating better and worse solutions taking into account the number of entries that 
are nearer the main diagonal. A fitness function that allows more progression among 
solutions is required. In this direction were suggested the other proposed fitness 
functions.  

 

 
Fig. 4. Matrix profiles belonging to the original matrix (left), and the inverse Cuthill-McKee ordering (right) 

Table 1. Fitness Function (FF) Values of sparse matrix reorderings corresponding to the evolutionary approach 

Original 
Matrix 

Inv.Cut-
McKee M 

FF 1    
Matrix 

FF 2    
Matrix 

FF 3     
Matrix 

FF 4     
Matrix 

FF 5     
Matrix 

FF 6     
Matrix 

FF1 428 39 328  175   92 50  432  308  

FF2 109834 20768  127398  21180  19011  18734  36226  35727 

FF3 2629651 147468  2616623  185188  128981  115656  541488  450726 

FF4 16767-E6 32.5-E6  14250-E6  219.6-E6  38.6-E6  18.6-E6  3170-E6  2006-E6 

FF5 12189628 1398169  14.6-E6 1481249   1297785  1332685  1011603  921926 

FF6 1012-E21 1002-E21  1008-E21  990-E21  986-E21 1004-E21  1002-E21  991-E21 

 



Considering the envelope as fitness function (second considered) improves the obtained 
results, reducing the semi-bandwidth to 175. The behaviour of the evolutionary 
algorithm is clearly favoured by the higher progressiveness of this fitness function 
compared with the first one. However, the envelope criterion is subjected to 
irregularities that allow a reduction of semi-bandwidth in certain zones of the profile.  

The third and fourth proposed fitness functions follow this aim of reduction of 
irregularities without losing the progressiveness among solutions. Both increase the 
penalization to the further terms and it is reflected in the semi-bandwidth obtained 
values (92 and 50), that are improved respect to the first and second fitness functions. 
The higher grade of the power in the fourth fitness function increases this effect, 
permitting to achieve a lower final value.  

The importance of an adequate election of the fitness function is here evidenced:  not 
always the most obvious proposal (here the semi-bandwidth) is the better. The 
capability of being a progressive fitness function, that allows identifying slow changes 
of candidate solutions in the right direction, is in this sparse matrix reordering problem 
fundamental to achieve success, as results have proven. This characteristic helps the 
evolutionary algorithm to evolve and learn during its development.  

3.2 THE SEEDED APPROACH 

The evolutionary approach for solving the sparse matrix reordering problem has 
demonstrated a general good performance in terms of solutions quality, except in the 
case of the semi-bandwidth as fitness function. In the rest of cases, the values of the 
evolutionary orderings are lower than those provided by the inverse Cuthill-McKee 
solution (with the exception of the second fitness function, which is slightly higher). 
However, improving the results of this evolutionary approach is sought.  

Table 2. Fitness Function (FF) Values of sparse matrix reorderings corresponding to the seeded approach 

Original 
Matrix 

Inv.Cut-
McKee M 

FF 1    
Matrix 

FF 2    
Matrix 

FF 3     
Matrix 

FF 4     
Matrix 

FF 5     
Matrix 

FF 6     
Matrix 

FF1 428 39 37  76   65  45 375  269  

FF2 109834 20768   20878  16899    16833   18016   20938   20635 

FF3 2629651 147468   148017   115334   104323   110130   176032   176486 

FF4 16767-E6 32.5-E6  32.6-E6  34.1-E6  20.2-E6  16.6-E6  341-E6  291-E6 

FF5 12189628  1398169  1417910 1088660   1106000 1180194   956376   870037 

FF6 1012-E21 1002-E21  1001-E21 1001-E21 1001-E21  1001-E21   1001-E21   999E-21 

 
The inclusion in the initial population of high quality solutions has been proved to be 

capable of obtaining improved results in terms of convergence speed and/or final 
quality, both in single and multi-objective evolutionary optimization, see for example 
[2,9,10,23]. Here is analysed the case of inserting the inverse Cuthill-McKee sparse 
matrix ordering as a high quality solution in the initial population, what is called seeded 
approach.  

In figure 6 the best of each fitness functions matrix reorderings including this solution 
in the initial population, are also shown. Their numerical expressions are shown in table 
2, where each reordering has the value of every considered fitness function. The values 
that have guided each solution are represented in bold type. 

As it can be inferred from the obtained results of this seeded approach, in general the 
values are improved compared with the evolutionary one, even in the case of the first 



fitness function (semi-bandwidth). This seeded approach allows for obtaining better 
sparse matrix reorderings in terms of quality compared with the sole classic Cuthill-
McKee method.  

 

 
Fig. 5. Matrix profiles belonging to the fitness function 1 to 6 best reorderings results, for evolutionary approach 

3.3 DISCUSSION 

From tables 1 and 2 can be inferred that sparse matrices reorderings obtained from 
functions 5 and 6 introduce a rise in the values of their functions 1 to 4. It can be 
observed also in figures 5 and 6, where the two inferior graphs in both figures represent 
this reorderings: some points are further from the principal diagonal than in previous 
pictures -this effect is reduced in function 6 with respect to function 5, because of its 
raised power position-term-. This occurs because the own value of the non-zero entry in 
the fitness function has been taken into account. In the case that this value is sufficiently 
low, its contribution to the fitness function summation is small, even in the case of 



being more separated to the main diagonal of the matrix. This consideration of the own 
value is not possible in the classic reordering procedures, and gives a possible potential 
competitive advantage to evolutionary algorithms reordering methods. 

 
Fig. 6. Matrix profiles belonging to the fitness function 1 to 6 best reorderings results, for seeded approach 

We have solved the system with the BiCGSTAB method [22], using two different 
preconditioners: Jacobi and SSOR [1]. The number of iterations corresponding to the 
different sparse matrix reorderings are shown in table 3 for a stop criterion based in 
norm 2. It is expressed in equation 1,  

10

2

2 10−<
−

b
Axb i  

 

  (1) 

being Ax=b the linear system. 



Table 3. Number of BiCGSTAB Solver Iterations required by the sparse matrices reorderings with the Jacobi and 
SSOR preconditioners 

  Original 

Matrix 

Inv. 
CutMK 
Matrix 

FF 1    

Matrix 

FF 2    

Matrix 

FF 3    

Matrix 

FF 4    

Matrix 

FF 5    

Matrix 

FF 6    

Matrix 

Jacobi  106   ---  101   105   106   104   106   103  Evolutionary  
Approach 

SSOR  42   ---   56   69   75   77   74   66 

Jacobi  --- 83  84   84   84   89   83    86 Seeded     
Approach 

SSOR   ---  28   27  30   30    30   30 33   

 
Due to the relative low order (441) of this matrix test case, the influence of the 

ordering in the iterations or resolution time is low. In this case, the computational cost 
of the reordering with evolutionary algorithms, is much higher than the cost of the 
system resolution by the Krylov method. Nevertheless, in systems of greater order, 
where their resolution cost is more expensive, it is expected that this reordering cost is 
compensated, especially when the system has to be solved many times. The advantages 
of the reordering influence when solving a linear system of equations is increased with 
the rise of the system size. This fact also increases the complexity of the combinatorial 
problem of reordering, and consequently, the calculation time. This balance has to be 
further analyzed in matrices of greater order or complexity. 

4 CONCLUSIONS 

This paper presents a successful methodology for sparse matrix reordering using 
evolutionary algorithms. Particularly, the introduced seeded approach -that consists in 
including the inverse Cuthill-McKee reordering in the initial population of the 
evolutionary algorithm- has proven to outperform in terms of quality of the solution the 
classical one. Even more, evolutionary algorithms allow the consideration of the value 
of the terms in the ordering procedure, which could be of particular interest for the 
preconditioning of iterative solvers.  

The advantages that an improved reordering can provide are especially outstanding in 
the case of performing design optimization with evolutionary algorithms, where many 
resolutions of matrix systems are required (e.g. finite or volume elements); but only one 
reordering may be necessary and applicable to the whole process. In that sense, further 
work should be advisable for achieving lower calculation times in the seeded approach 
procedure, including suitable operators and parameters of the evolutionary part. 
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