Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120332
Campo DC Valoridioma
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorDe Marsico, Mariaen_US
dc.contributor.authorBarra, Paolaen_US
dc.contributor.authorLorenzo Navarro, José Javieren_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.date.accessioned2023-01-30T12:39:23Z-
dc.date.available2023-01-30T12:39:23Z-
dc.date.issued2023en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://hdl.handle.net/10553/120332-
dc.description.abstractSmartphones contain personal and private data to be protected, such as everyday communications or bank accounts. Several biometric techniques have been developed to unlock smartphones, among which ear biometrics represents a natural and promising opportunity even though the ear can be used in other biometric and multi-biometric applications. A problem in generalizing research results to real-world applications is that the available ear datasets present different characteristics and some bias. This paper stems from a study about the effect of mixing multiple datasets during the training of an ear recognition system. The main contribution is the evaluation of a robust pipeline that learns to combine data from different sources and highlights the importance of pre-training encoders on auxiliary tasks. The reported experiments exploit eight diverse training datasets to demonstrate the generalization capabilities of the proposed approach. Performance evaluation includes testing with collections not seen during training and assessing zero-shot cross-dataset transfer. The results confirm that mixing different sources provides an insightful perspective on the datasets and competitive results with some existing benchmarks.en_US
dc.languageengen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.sourcePattern Recognition Letters [ISSN 0167-8655], v. 166, p. 143-150, (Febrero 2023)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherEar recognitionen_US
dc.subject.otherZero-shot crossen_US
dc.subject.otherdataset transferen_US
dc.subject.otherQuadruplet lossen_US
dc.titleZero-shot ear cross-dataset transfer for person recognition on mobile devicesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patrec.2023.01.012en_US
dc.description.lastpage150en_US
dc.description.firstpage143en_US
dc.relation.volume166en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,4
dc.description.jcr5,1
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
Adobe PDF (2,27 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.