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a b s t r a c t 

Smartphones contain personal and private data to be protected, such as everyday communications or 

bank accounts. Several biometric techniques have been developed to unlock smartphones, among which 

ear biometrics represents a natural and promising opportunity even though the ear can be used in other 

biometric and multi-biometric applications. A problem in generalizing research results to real-world ap- 

plications is that the available ear datasets present different characteristics and some bias. This paper 

stems from a study about the effect of mixing multiple datasets during the training of an ear recognition 

system. The main contribution is the evaluation of a robust pipeline that learns to combine data from 

different sources and highlights the importance of pre-training encoders on auxiliary tasks. The reported 

experiments exploit eight diverse training datasets to demonstrate the generalization capabilities of the 

proposed approach. Performance evaluation includes testing with collections not seen during training and 

assessing zero-shot cross-dataset transfer. The results confirm that mixing different sources provides an 

insightful perspective on the datasets and competitive results with some existing benchmarks. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Biometric recognition compares incoming templates extracted 

rom physical or behavioral traits to stored ones to authenticate or 

dentify an individual. Physical traits are mostly related to appear- 

nce (e.g., fingerprint, iris, face); behavioral ones reflect the user’s 

ehavior (e.g., keystroke dynamics, gait). 

The research community has proposed different biometric- 

ased techniques during the past two decades, with a relevant 

umber focusing on mobile applications. The smartphone sales 

rowth and the increasing amount of sensitive information stored 

n these devices have boosted security research by calling for re- 

iable authentication techniques to unlock them. Traditional pass- 

ords have been used first. To this respect, a recent article 

y [37] states that, on average, Americans check their phones 

62 times per day. This means that using a four-digit password 

cheme, each American will type 1048 characters per day to un- 

ock the smartphone. However, repeated typing or, even worse, re- 
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se [5] can expose the password, which can also be guessed or 

racked. Moreover, the stronger the password, the hardest to re- 

ember. 

More recently, biometric-based technologies, including iris, fin- 

erprint, and face recognition, have gradually replaced or comple- 

ented the password-based methods [34] . Fingerprint and face 

ecognition are widely used in smartphone unlocking, but they 

till can be attacked. Komkov and Petiushko [27] have proposed a 

ethod to attack the Face ID system based on a sticker placed on 

he forehead. On the other hand, fingerprints may not work due to 

irty or sweaty fingers, and they can be quite easily reproduced. 

herefore, robust biometric-based methods continue deserving at- 

ention. 

The human ear is a biometric trait with several features that 

ould be exploited in authentication. It is especially suited for 

martphone protection due to its natural capture operation resem- 

ling a regular call [15] . categorized ear features into three lev- 

ls: (1) the global ear appearance (overall shape, color), (2) the 

ar geometric structure (edges, folds, ridges, relative distances), 

nd (3) unstructured micro features (piercings, birthmarks). Only 

he second and third levels provide highly discriminative biomet- 

ic features, while the first is soft. Recently, deep learning ap- 
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Fig. 1. Zero-shot ear cross-dataset transfer for person authentication. The pro- 

posed experiments analyze the person authentication performance with a model 

tested on datasets not seen during training. Top: a generic set of collections used for 

training. Bottom left: the unseen test dataset. Bottom right: the proposed pipeline 

to efficiently recognize a subject in a single forward pass. 
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Fig. 2. The considered training scheme. The devised training process comprises 

three main modules: a backbone to extract features followed by a head, while the 

final embeddings are used to compute the quadruplet loss function. 
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roaches [2,3,20,30] have achieved significant progress compared 

ith handcrafted features [1,9,28] . 

To the best of our knowledge, even the present proposals that 

se multiple datasets do so without mixing them, i.e., each method 

s evaluated separately on each dataset. However, generalizing 

hose research results to real-world applications is almost impos- 

ible since the available ear datasets present different character- 

stics. When passing from cross-fold to cross-dataset evaluation, 

hich is closer to the actual application’s use, performance drops 

ramatically. This work advances toward cross-dataset assessment 

y proposing a novel ear recognition approach whose end-to-end 

odel relies on a set of auxiliary pre-trained encoders. Its novelty 

elies on something other than designing a brand-new architec- 

ure to achieve higher SOTA results. Instead, it leverages a popular 

re-trained backbone to set up an effective pipeline to tackle the 

ross-dataset evaluation challenge. The experiments test whether 

 mixed training strategy can provide better generalizable results 

sing already available models. The main contributions are: 

- the experimental zero-shot cross-dataset transfer protocol, 

raining a model on a set of ear datasets and testing its perfor- 

ance on different unseen ones ( Fig. 1 ); the goal is a more reliable

stimate of “real-world” performance than training and testing on 

ubsets of a single, and often biased, data collection [32,36] ; 

- competitive cross-dataset results, namely more than a 70% 

ank-5 on some of the collections considered ; 

- a pipeline built on top of a leveraged pre-trained backbone, 

chieving highly competitive ear recognition and improving some 

tate-of-the-art (SOTA) baselines (see Fig. 2 in Section 4 ), despite 

he testing on unseen collections. 

. Related work 

The work by Iannarelli [25] provides a pioneer study about the 

iability of ear biometrics. Since then, several proposals have dealt 

ith it, even in unconstrained settings [6] . Early works mainly 

sed 2D ear images. A survey by Emerši ̌c et al. [19] classifies the

isual recognition techniques into geometric, holistic, local, and hy- 

rid. Geometric techniques exploit the ear geometrical characteris- 

ics as in [7] . Holistic approaches consider the ear as a whole to 

xtract features representing global properties, such as the force 

elds introduced in [24] . Local approaches extract features from lo- 

al areas of an image with recognition purposes, as in the proposal 
144 
y Bustard and Nixon [9] . Finally, hybrid approaches combine ele- 

ents from the previously described categories, as in [28] . 

2D images present substantial limitations due to the ear 3D 

tructure, suffering from occlusions, illumination conditions, and 

amera points of view. Compared with the 2D data, the 3D data 

ontains richer information about the ear shape and is more robust 

o these factors. The works by Chen and Bhanu [11] and [39] are 

mong the first related proposals. Computational complexity and 

rocessing times are the main issues for the real-time application 

f 3D techniques. It is important to mention that most early works 

ested their approach on a single collection, such as the face-profile 

ubset of the XM2VTS dataset exploited in [4] . 

Only a few works apply deep learning for ear recognition. 

aldámez et al. [20] use a 3-layers convolutional neural network 

CNN) and report accurate rates on their collection. Images are re- 

ized to 64 × 64 to fit into the shallow CNN. More recently, Priyad- 

arshini et al. [30] exploits a 6-layers CNN for ear recognition. 

n this case, experiments rely on two publicly available datasets: 

he IITD-II dataset and the AMI dataset [21,29] . More recently, 

lshazly et al. [2] has achieved high performance on the AMI 

ataset and the CVLE dataset [16] by combining image augmenta- 

ion and fine-tuning of a pre-trained neural network. Precisely, the 

pproach gathers the probabilities of distinct pre-trained networks 

o achieve noticeable accuracy rates on the EarVN1.0 dataset [23] . 

Regarding evaluation, the experiments in the first works on ear 

ecognition mainly rely on in-house collections, which are not all 

ublicly available [10] . proposes one of the earliest ear recognition 

atasets (CP). However, it has not been used much in literature due 

o its limitations in pose variations and subject identities (17 sub- 

ects only). Some approaches use image collections not explicitly 

imed at ear recognition, e.g., XM2VTS, a generic multi-modal face 

ataset. Significant progress has been made in the past few years 

o remove these limitations. The Ear Recognition Laboratory at the 

niversity of Science & Technology of Beijing (USTB) introduced 

our distinct ear datasets [14] . The first two only contain grayscale 

ropped ear images, while the other two include whole head pro- 

le shots. Contrary to the CP dataset, the USTB ear datasets provide 

llumination variations, occlusions, and pitch angles in the range 

 −30 ◦, +30 ◦] making it more challenging. The following section de- 

cribes different datasets that have been used in this work. 

It is reasonable to argue that highly accurate deep-learning 

odels for ear recognition can operate on a relatively wide and 

nconstrained range of ear samples. However, the need for large- 

cale data in various conditions can limit performance gener- 

lizability. Commonly used collections feature homogeneous ear 

ayouts in pose, illumination, and occlusions. Therefore models 

rained and tested on a single dataset might be biased and prone 

o fail in a different context. To our knowledge, the evaluation in 
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Table 1 

The ear datasets considered in this work in chronological order. The last column shows the resolution variation. 

Dataset Authors Source # Subjects # Images Color Ethnic Pose Res. Var. 

AMI [21] Manually 100 700 RGB Caucasian Profile None 

IITD-I [29] Manually 125 493 GRAY Indian Profile None 

IITD-II [29] Manually 221 793 GRAY Indian Profile None 

AWE [19] Internet 100 1000 RGB Varied Varied Strong 

CVLE [16] Internet 16 804 RGB Caucasian Varied Strong 

AWEx [18] Internet 220 2200 RGB Varied Varied Strong 

BIPLab [1] Manually 100 300 RGB Caucasian Profile Low 

EarVN1.0 [23] Internet 164 28412 RGB Asian Varied Strong 
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he mentioned works did not mix different collections and relied 

n each dataset separately. 

. Considered datasets 

The available ear datasets generally differ in the source (cap- 

ured images/image web crawler), capture pose (front/profile ear), 

umber of participants, dataset size, ethnicity, and camera set- 

ings. Each collection has its unique characteristics and/or limita- 

ions, possibly causing experimental bias [36] . Literature testifies 

hat training and testing on partitions of the same ear dataset can 

ead to a robust performance [2,3,23] . However, it may lack gen- 

ralization capabilities to unseen data with different characteris- 

ics (camera configuration, ear pose, environment). On the other 

and, acquiring a new large-scale ear dataset from scratch is hard, 

oo, whereas a large one collected from the Internet may raise le- 

al (e.g., copyright) or social problems (e.g., privacy). This work in- 

tead proposes to train and test on a mix of unrelated datasets. 

his approach has been proposed before in different contexts. For 

nstance, Ranftl et al. [32] applies it for monocular depth estima- 

ion. The authors train and test on a different collection of datasets 

o analyze the performance of each combination and obtain a ro- 

ust model able to generalize. Table 1 details the collections used 

n this work. 

AMI [21] contains seven noiseless images per subject (six right 

ar and one left ear images) collected under fixed illumination 

onditions using both a 135 mm and 200 mm focal length. Poses 

arely vary in yaw but severely vary in pitch (around 40–45 ◦). 

The IITD-I and IITD-II are two distinct gray-scale collections cre- 

ted by Kumar and Wu [29] . They were both captured under the 

ame indoor illumination and with a fixed camera position (ap- 

roximately the same profile angle). The main difference between 

hem relies on the pre-processing of the IITD-II images: all ears 

re cropped, centered, and aligned. The number of images per user 

aries from 3 to 6 samples. 

The AWE dataset introduces the notion of ear images captured 

n the wild [19] . collected all the celebrity images from the Inter- 

et with a wide range of image conditions. Each subject has ten 

mages, and the image size severely varies, from 15 × 29 pixels for 

he smallest sample to 473 × 1022 pixels for the largest sample. 

ater on [16] , presented the CVLE dataset. This dataset is smaller in 

erms of subjects (just 16) but has a higher variance in the num- 

er of samples (from 18 to 93 samples per subject). The same au- 

hors created the AWE_Ext dataset by mixing the AWE dataset, the 

VLE dataset, and 2200 new images of 220 subjects. The three sub- 

atasets are disjoint. In order to compare the present work with 

revious ones, we have split AWE_Ext into its three previously de- 

cribed components (see Table 1 ), so that AWE_Ext only refers to 

he new 2200 samples. Also, AWE_Ext new images were collected 

utomatically from the Internet and manually screened to ensure 

hat ears were indeed present in all of them. The AWE_Ext subset 

s highly diverse, with ten samples per subject and extreme vari- 

tions in the image size. The UERC dataset was also presented by 

merši ̌c et al. [17] . The experiments here will not consider this col-
145 
ection because it highly correlates to the AWE, CVLE, and AWE_Ext 

atasets. 

Recently, [1] proposed the new dataset BIPLab. It includes 300 

mages of 100 distinct participants. Contrary to other manual col- 

ections, images were taken under uncontrolled illumination and 

ith a non-fixed camera position. The authors tried to simulate 

he ear portion captured during a call to cover approximately 90% 

f the image. Samples can be blurred, and ear poses barely vary in 

aw and pitch. 

The last considered dataset is the EarVN1.0 [23] . This collection 

as gathered from the Internet and provided images of both ears 

er person under unconstrained conditions. Therefore, it exhibits 

ignificant variations of pose, scale, and illumination. This collec- 

ion presents a high variance in the number of samples, between 

07 and 300. 

. Description of the proposal 

.1. The considered training scheme 

Fig. 2 depicts the considered training scheme corresponding 

o a quadruplet network [12] . This network is made up of four 

ranches with shared parameters that are fed with four samples 

quadruplet) named anchor ( x ), positive ( x + ), negative 1 ( x −
1 

) and

egative 2 ( x −
2 

). The network aims to find an embedding function 

f (. ) , that reduces the intra-class dispersion and increases the inter- 

lass margin. A pre-trained convolutional neural network realizes 

he embedding function in our proposal, with the last set of layers 

odified to fit our problem at hand. Section 4.2 extensively stud- 

es and compares different CNN architectures, leading to choosing 

GG16. In this work, VGG16 is modified, replacing the last max- 

ool layer with the head. 

The five-layers head encoder in the second step transforms the 

reviously computed features into a more specific and smaller set 

f features. The first layer applies a global average pooling op- 

ration to the pre-trained encoder output. Then, the data passes 

hrough two dense layers (512 units each) separated by a batch 

ormalization layer. A final dense layer embeds the information 

nto a space of 20 elements. This allows the next module to com- 

ute the distance between embeddings. 

The proposed network is fine-tuned using the quadruplet loss 

unction [12] , QL hereafter, defined as follows: 

L (x , x 

+ , x 

−
1 , x 

−
2 ) = max (g(x , x 

+ ) − g(x , x 

−
1 ) + m 1 , 0) 

+ max (g(x , x 

+ ) − g( x 

−
1 , x 

−
2 ) + m 2 , 0) (1) 

here the L2-distance is used to compute the loss function, 

(a, b) = || f (a ) − f (b ) || 2 2 , and f (. ) is the embedding function. The

argin parameters are denoted as m 1 and m 2 . Accordingly, sim- 

lar objects are closer while dissimilar objects are pushed away 

rom each other. The extra negative sample distance ( g( x −
1 
, x −

2 
) ) 

dded to the loss in Eq. (1) helps the network to learn a better- 

eneralized rule in terms of similarity. Similarly, Proen ̧s a et al. 

31] have used the QL for an identification problem. Their work 

ses a 128-dimensional space obtained by combining several 
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Table 2 

Recognition Error when fine-tuning on (single) different train- 

ing collections. Lower is better. The best cross-dataset perfor- 

mance for each testing collection (columns) is bold, second best 

is underlined. 

Train \ Test AWE CVLE IITD-II BIPLab 

AMI 95.0 75.0 74.7 60.0 

IITD-I 97.0 87.5 66.1 61.0 

AWE_Ext 92.0 62.5 71.5 57.0 

EarVN1.0 96.0 62.5 77.8 82.0 

In-dataset LBP_Base 88.0 81.3 14.5 28.0 

In-dataset VGG_Base 94.0 87.5 43.9 47.0 

Table 3 

The different datasets combinations used for training. 

AWE_Ext AMI IITD-I EarVN1.0 

MIX 1 � � 

MIX 2 � � � 

MIX 3 � � � � 
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atasets with more than 700K identities. They show that results 

tabilize for dimensions larger than 128. However, this research 

eals with much fewer identities. A grid search using some of the 

onsidered datasets has shown that the results stabilize for a 20- 

imensional space. 

Once the model is adequately trained, at the recognition time 

t will generate an embedding vector for each input sample and 

ompare it with the embedding vectors stored in the gallery during 

he enrollment. 

.2. The adopted experimental protocol 

Sample mining strategy . When using QL the input of the pro- 

osed training pipeline is a quadruplet. A careful selection of 

uadruplet samples able to exemplify a wide range of variations 

s a challenging step [12] . introduces a margin-based online hard 

egative mining to select hard samples to train the model. Gener- 

lly, the hardness of a sample depends on how much loss it will 

enerate. Easy samples barely generate a loss value, if any, because 

he positive sample is very close to the anchor, whereas the neg- 

tive sample/s are far from each other. In contrast, hard samples 

enerate a high loss value because the positive sample is far from 

he anchor and the negative sample/s are close to each other. Con- 

rary to easy samples, hard samples help the model to reduce the 

oss aggressively. The proposed protocol entails loading batches of 

28 sample quadruplets, as shown in Fig. 1 , where half of the sam-

les are random items (hard or not) and the other half are hard 

nes. It has been experimentally verified that this strategy allows 

he model to converge on a regular basis. In addition, samples in 

he same quadruplet come from the same dataset, but quadruplets 

an be drawn from different datasets. 

Data augmentation . Most considered collections provide a too 

ow number of samples per subject. For instance, the BIPLab 

ataset collects three images per subject, while during training at 

east four images (two from the same subject) are necessary to 

reate a quadruplet sample. In these cases, a data augmentation 

rocedure ensured 100 samples per subject, except for EarVN1.0 

hat already contains from 107 to 300 images per subject. The ap- 

lied data augmentation transformations include random bright- 

ess, random contrast, motion blur, horizontal flip, shift, scale, and 

otate [8] . Augmented subsets are only used for training. 

Backbone comparison and final choice . The comparison in- 

olved several pre-trained encoders: VGGNet [33] , InceptionV3 

35] , ResNet [22] and ResNeXt [38] . All those backbones were 

rained on the ImageNet dataset [13] considering 10 0 0 differ- 

nt classes. The pipeline in Fig. 2 combined each pre-trained en- 

oder with a trainable encoder, using Adam optimizer [26] with 

 learning rate of 10 −5 and the decay rate by a factor of 0.4.

ig. 3 shows the results on five representative datasets out of those 
ig. 3. Relative rank-1 performance of backbones across different datasets with re- 

pect to InceptionV3. 
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n Section 2 . It shows as baseline the worst performance that In- 

eptionV3 achieved on each collection, and the performance of the 

ther backbones as a relative improvement with respect to it. Even 

hough the performance always depended on the dataset, VGG16 

utperformed any other pre-trained model counterpart if consid- 

ring the overall results. For instance, ResNext101 equals VGG16 

erformance on IITD-II. However, VGG16 outperforms ResNext101 

hen any other collection is considered. The performance differ- 

nce is significant when considering a more challenging dataset, as 

 significant boost is achieved with in-the-wild datasets AWE and 

VLE (20% on average). It is reasonable to assume that, since these 

esults hold for the single datasets, it is appropriate to choose 

GG16 in our approach. 

. Experimental evaluation 

Similarly to [32] , the collections were partitioned into train- 

ng and test datasets to test the performance on the most cited 

atasets in literature, collected in different conditions. After an ex- 

ensive study of the selected backbone VGG16 on each collection 

n Table 1 (see Fig. 3 ), we identified similar distributions of condi- 

ions for training and testing: captured in the wild (AWE_Ext and 

arVN1.0 for training, AWE and CVLE for testing), in a controlled 

nvironment (AMI and IITD-I for training, IITD-II for testing), and 

 mixed environment (BIPLab testing only). The experiments as- 

essed different mixtures of training conditions reflected by the 

ombination of different corresponding datasets (see Table 3 ). 

Data are imbalanced in some collections, so the reported per- 

ormance considers the average of ten random splits to gener- 

te the gallery and the probe, with a sample per user in both 

ets. L2-distance (see Section 4 ) measures the distance between 

robe/gallery embeddings pairs. Distances are used to order the 

ist of gallery embeddings for each probe (closed set identifica- 

ion). Two baseline algorithms are further tested. The implemen- 

ations were included in the participants’ starter kit for the Un- 

onstrained Ear Recognition Challenge - UERC 2019: (i) an LBP- 

ased approach ( In-dataset LBP_Base hereafter), and (ii) a CNN- 

ased model [17] built around the VGG-16 architecture ( In-dataset 

GG_Base hereafter). Regarding the first one, each test sample’s 

eature vectors are computed without any training according to the 

and-crafted LBP features. Since histograms represent them, they 

re compared using the Bhattacharyya distance. Regarding the sec- 

nd baseline, the embeddings for test samples are computed using 

he pre-trained VGG model on ImageNet. Then, Euclidean distance 

s used to compare the VGG embeddings. This process may lead to 
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 non-generalizable set of embeddings the dataset’s intrinsic fea- 

ures may bias [36] . The performance is reported in terms of the 

ecognitionError (RE) , intended as 1 - Rank-1 , where Rank-1 is the 

ercentage of probes for which the correct identity was returned 

n the first position of the ordered list. 

Table 2 reports the results of experiments with a single train- 

ng dataset (rows) and a single (unseen) testing dataset (columns), 

.e., cross-dataset evaluation when the collection used for training 

s different (with possibly very different characteristics) from the 

ne used for testing. Worse results are expected under these con- 

itions than splitting train and test sets from a single collection. 

hese tables show the generalizability of training on the single 

atasets, which dataset is better for training and in which con- 

itions, which dataset is worse, and the performance differences. 

hen training with AWE_Ext, the best performance is achieved 

ith AWE, CVLE, and BIPLab due to the large variability of sam- 

les captured under different angles that it includes. In most ex- 

eriments, AMI provides good results. Due to similar characteris- 

ics of IITD-I and IITD-II, the former outperforms any other train- 

ng dataset when testing on the latter. Likewise, IITD-I performed 

oorly when any other dataset but IITD-II was tested due to the 

pecificity of their samples. Finally, AMI provides positive results 

n most experiments despite not being the best in any experiment. 

egarding the considered baselines, the cross-dataset experiments 

lso provide compelling results when testing on a wild dataset. 
ig. 4. CMC curves when fine-tuning on different (single) training collections. Black 

olid line is for In-dataset LBP_Base , whereas black dashed line is for In-dataset 

GG_Base . 

Fig. 4. Continued 

H

t

b

m

T

a

(

(

i

t

l

I

t

b

t

t

T

n

g

s

g

w

b

(

147 
owever, baselines are pretty robust on indoor datasets, especially 

he In-dataset LBP_Base. This effect can be seen in Fig. 4 , which 

etter details the above considerations by showing a set of Cu- 

ulative Match Characteristic (CMC) curves for each test dataset. 

he top pair of plots corresponds to less controlled datasets (AWE 

nd CVLE), while the bottom pair to more controlled conditions 

IITD-II and BIPlab). Different colors correspond to different single 

cross-)training datasets, and black colors are baselines (solid black 

s In-dataset LBP_base , dashed black is In-dataset VGG16_base ). In 

he cross-dataset experiment, performance barely improves base- 

ines on BIPLab and does not improve the LBP-based baseline on 

ITD-II. This may be due to the robustness of these baselines due 

o the intrinsic features of the indoor datasets. On the other hand, 

aselines on wild collections, i.e., AWE and CVLE, do not exhibit 

he same behavior due to data variability. 

Subsequent experiments adopted mixed training collections 

o analyze mixture performance on the (single) test datasets. 

able 3 summarizes the training combinations. Test datasets were 

ever used for fine-tuning. AWE_Ext is the compared baseline sin- 

le training dataset, being the most promising in Table 2 . For the 

ame reason, it is included in all the mixed collections. In this re- 

ard, Table 3 shows that we have adopted an incremental approach 

hen generating the mixes, similar to [32] . Therefore, MIX1 com- 

ines a wild dataset (AWE_Ext) and the most stable indoor dataset 

AMI), MIX2 includes all the considered datasets in MIX1 and the 
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Table 4 

Absolute performance (Recognition Error) when mixing the 

training datasets against the AWE_Ext baseline. Lower is bet- 

ter. The best cross-dataset performance is bold, second best is 

underlined. 

Train \ Test AWE CVLE IITD-II BIPLab 

AWE_Ext 92.0 62.5 71.5 57.0 

MIX 1 93.0 68.8 58.4 51.0 

MIX 2 86.0 50.0 57.5 48.0 

MIX 3 90.0 75.2 59.7 45.0 

In-dataset LBP_Base 88.0 81.3 14.5 28.0 

In-dataset VGG_Base 94.0 87.5 43.9 47.0 

b

e

t

c

e

l

l

m

I

l

T

F

L

est dataset on IITD-II (IITD-I), and MIX3 combines all the consid- 

red training datasets. The goal is twofold. First, this is done to 

ake advantage of the most effective training samples. Secondly, it 

an further highlight the improvement that can be achieved over 

ven the best training collection when used alone. 

Tables 4 and 5 confirm the improvement of the mixed col- 

ections for each tested dataset. Considering the In-dataset base- 

ines, Table 4 shows a notable improvement over the non- 

ixed experiment described previously. MIX2 outperforms both 

n-dataset baselines when wild datasets are tested and one base- 

ine (In-dataset VGG_Base) when the BIPLab dataset is tested. 

able 5 shows the relative performance over the AWE_Ext base- 
ig. 5. CMC curves with mixed training datasets. Black solid line is for In-dataset 

BP_Base , whereas black dashed line is for In-dataset VGG_Base . 

Fig. 5. Continued 

Table 5 

Relative performance (Recognition Error) when mixing the 

training datasets against the AWE_Ext baseline (top row). The 

best performance is bold, second best is underlined. 

AWE CVLE IITD-II BIPLab Mean 

AWE_Ext 92.0 62.5 71.5 57.0 - 

MIX 1 -1.1% -10% 18.3% 10.5% 4.4% 

MIX 2 6.5% 20% 19.6% 15.8% 15.5% 

MIX 3 2.2% -20% 16.5% 21.1% 5% 

l
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ine. Several interesting insights can be inferred from this table. 

irst, adding an indoor dataset (AMI) to the AWE_Ext dataset no- 

ably improves the performance over the tested indoor collections. 

econd, significant variations in performance must be seen in per- 

pective due to the high variance number of subjects between test 

atasets. For instance, a single correctly classified sample on CVLE 

mplies a 6.25% rank-1 improvement. In contrast, a minor improve- 

ent under the same circumstance can be achieved for BIPLab 

1%), AWE(1%), and IITD-II (0.45%) due to the higher number of 

ubjects assessed on these collections. Finally, MIX2 provides bet- 

er results because adding IITD-I boosted the performance when 

esting on IITD-II. 

The comparison of Figs. 4 and 5 testifies the different and much 

ore stable, therefore generalizable, performance measures ob- 

ained using a mixture of training collections. The gap between 
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he experiment’s CMC curves and the In-dataset baselines is higher 

or all collections, being particularly better on both wild collec- 

ions (AWE and CVLE). Again, it is worth underlining that both 

esult sets belong to cross-dataset evaluation. As we previously 

tated, testing on indoor datasets, i.e., IITD-II and BIPLab, has no 

mprovements over baselines in terms of net rank-1 CMC. However, 

t is worth underlining that the mixed training results stabilize at 

he best CMC curve on BIPLab. Another interesting intuition from 

ig. 5 is that adding datasets does not improve rank-1 performance 

nconditionally during mixing but achieves a better overall curve. 

or instance, see MIX3 on the AWE dataset. 

. Conclusion 

Ear recognition is a feasible biometric method and appears 

specially viable for smartphone authentication. However, a ro- 

ust and generalizable assessment of the recognition methods is 

eeded. Many deep learning approaches have been recently using 

ar datasets to outperform previous proposals. This work evalu- 

ted the robustness and generality of different models by apply- 

ng the zero-shot cross-dataset transfer. Interestingly, our findings 

an be summarized as follows. (I) When performing cross-dataset 

xperiments without mixing collections, in-the-wild datasets pro- 

ide better generalization when used for training than those ac- 

uired in a controlled environment (see AWE_Ext on Table 2 ). This 

eets preliminary expectations since in-the-wild data include a 

ider variety of distortions and their more realistic combination, 

herefore feeding a more robust and generalizable model. (II) In 

he same conditions, datasets in controlled environments provide a 

ore robust intra-dataset baseline than those created in the wild 

see In-dataset LBP_Base and In-dataset VGG_Base on BIPLab and 

ITD-II in Table 2 and Fig. 4 ). Of course, this may be caused by sim-

lar, possibly equally biased conditions. (III) The zero-shot cross- 

ataset pipeline has a more limited impact on datasets with a solid 

ntra-dataset baseline (see IITD-II on Figs. 4 and 5 ). Again, this may 

e caused by the fact that in intra-dataset baselines, the model 

omputed during training is applied to test data with similar char- 

cteristics and possibly similar bias. IV) The intra-dataset baselines 

an be easily beaten on wilder datasets (see In-dataset LBP_Base 

nd In-dataset VGG_Base on AWE and CVLE). This further demon- 

trates that the higher the variability of training data, the bet- 

er the performance even concerning using a single, more realis- 

ic training collection. (V) Mixing datasets during training provides 

etter results than just crossing datasets without mixing them (see 

igs. 4 and 5 ). This is quite an intuitive and expected outcome 

ince training with a single collection and testing on a different 

ne causes to apply a model built on data with possibly very dif- 

erent characteristics. (VI) Finally, mixtures of datasets collected in 

 wilder environment better support generalization when apply- 

ng zero-shot cross-dataset transfer than mixtures of controlled- 

nvironment collections. This may suggest low generalizability to 

ew data or that some datasets may be more biased than others 

ue to a lack of enough realistic variations. The consequence is that 

esults achieved on these collections are seldom widely generaliz- 

ble through mixing them. 
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