Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119849
Campo DC Valoridioma
dc.contributor.authorHernández Guedes, Abián-
dc.contributor.authorSantana Pérez, Idafen-
dc.contributor.authorArteaga Marrero,Natalia-
dc.contributor.authorFabelo Gómez, Himar Antonio-
dc.contributor.authorMarrero Callicó, Gustavo Iván-
dc.contributor.authorRuiz Alzola, Juan Bautista-
dc.date.accessioned2022-12-22T10:30:42Z-
dc.date.available2022-12-22T10:30:42Z-
dc.date.issued2022-
dc.identifier.issn2169-3536-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/119849-
dc.description.abstractData scarcity is a common and challenging issue when working with Artificial Intelligence solutions, especially those including Deep Learning (DL) models for tasks such as image classification. This is particularly relevant in healthcare scenarios, in which data collection requires a long-lasting process, involving specific control protocols. The performance of DL models is usually quantified by different classification metrics, which may provide biased results, due to the lack of sufficient data. In this paper, an innovative approach is proposed to evaluate the performance of DL models when labeled data is scarce. This approach, which aims to detect the poor performance provided by DL models, in spite of traditional assessing metrics indicating otherwise, is based on information theoretic concepts and motivated by the Information Bottleneck framework. This methodology has been evaluated by implementing several experimental configurations to classify samples from a plantar thermogram dataset, focused on early stage detection of diabetic foot ulcers, as a case study. The proposed network architectures exhibited high results in terms of classification metrics. However, as our approach shows, only two of those models are indeed consistent to generalize the data properly. In conclusion, a new methodology was introduced and tested to identify promising DL models for image classification over small datasets without relying exclusively on the widely employed classification metrics. Example code and supplementary material using a state-of-the-art DL model are available at https://github.com/mt4sd/PerformanceEvaluationScarceDataset-
dc.languageeng-
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial-
dc.relation.ispartofIEEE Access-
dc.sourceIEEE Access [ISSN 2169-3536], v. 10, p. 124373-124386, (Septiembre 2022)-
dc.subject.otherDeep learning-
dc.subject.otherInformation theory-
dc.subject.otherInformation bottleneck-
dc.subject.otherDiabetes-
dc.subject.otherThermal imaging-
dc.titlePerformance Evaluation of Deep Learning Models for Image Classification Over Small Datasets: Diabetic Foot Case Study-
dc.typeinfo:eu-repo/semantics/article-
dc.identifier.doi10.1109/ACCESS.2022.3225107-
dc.identifier.scopus85144015159-
dc.contributor.orcid0000-0002-2508-2845-
dc.contributor.orcid0000-0001-8296-8629-
dc.contributor.orcid0000-0002-1645-0810-
dc.contributor.orcid0000-0002-9794-490X-
dc.contributor.orcid0000-0002-3784-5504-
dc.contributor.orcid0000-0002-3545-2328-
dc.contributor.authorscopusid58017269600-
dc.contributor.authorscopusid55367714100-
dc.contributor.authorscopusid14038607600-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid56614041800-
dc.identifier.eissn2169-3536-
dc.description.lastpage124386-
dc.description.firstpage124373-
dc.relation.volume10-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.utils.revision-
dc.date.coverdateEnero 2022-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,926-
dc.description.jcr3,9-
dc.description.sjrqQ1-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUIBS: Patología y Tecnología médica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2508-2845-
crisitem.author.orcid0000-0001-8296-8629-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.orcid0000-0002-3545-2328-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameHernández Guedes, Abián-
crisitem.author.fullNameSantana Pérez,Idafen-
crisitem.author.fullNameArteaga Marrero,Natalia-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.author.fullNameRuiz Alzola, Juan Bautista-
Colección:Artículos
Adobe PDF (3,62 MB)
Vista resumida

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

82
actualizado el 03-ago-2024

Descargas

140
actualizado el 03-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.