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ABSTRACT Data scarcity is a common and challenging issue when working with Artificial Intelligence
solutions, especially those including Deep Learning (DL) models for tasks such as image classification.
This is particularly relevant in healthcare scenarios, in which data collection requires a long-lasting process,
involving specific control protocols. The performance of DL models is usually quantified by different
classification metrics, which may provide biased results, due to the lack of sufficient data. In this paper,
an innovative approach is proposed to evaluate the performance of DL models when labeled data is
scarce. This approach, which aims to detect the poor performance provided by DL models, in spite of
traditional assessing metrics indicating otherwise, is based on information theoretic concepts and motivated
by the Information Bottleneck framework. This methodology has been evaluated by implementing several
experimental configurations to classify samples from a plantar thermogram dataset, focused on early stage
detection of diabetic foot ulcers, as a case study. The proposed network architectures exhibited high results
in terms of classification metrics. However, as our approach shows, only two of those models are indeed
consistent to generalize the data properly. In conclusion, a new methodology was introduced and tested to
identify promising DLmodels for image classification over small datasets without relying exclusively on the
widely employed classification metrics. Example code and supplementary material using a state-of-the-art
DL model are available at https://github.com/mt4sd/PerformanceEvaluationScarceDataset.

INDEX TERMS Deep learning, information theory, information bottleneck, diabetes, thermal imaging.

I. INTRODUCTION
Artificial intelligence is on trend for multiple medical appli-
cations, such as segmentation, localization, classification,
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raw data analysis, or risk assessment for chronic wounds [1],
[2], [3], [4]. Currently, the main approach in this area is the
usage of Deep Learning (DL) models. These models have the
capacity of manipulating large amounts of data to solve prob-
lems such as, for instance, detecting diseases from medical
images. The performance of these models are comparable to
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those obtained by healthcare professionals [5]. As a result,
DL models provide an easily adaptable output with high
accuracy, while reducing human bias, associated costs, and
the burden of time-consuming tasks.

In spite of the advantages provided by DL models, its
implementation and use in health-care scenarios have not
been completely achieved. More studies are required to con-
sider the integration of these algorithms in the health-care
setting [3], [5]. The main challenge in this domain is often
the lack of sufficient labeled data [6], known as the data
challenge. This is caused by the difficulty to perform a sys-
tematic collection of data to create large and well-curated
datasets for training DL models. In general, DL models tend
to have a high number of parameters and may overfit the
training dataset, which is common bias if the training dataset
is not large enough. As a consequence, themodel will perform
well on the training dataset and poorly on new data. There
are techniques to mitigate this problem, such as transfer
learning [7] or data augmentation [8], [9]. Furthermore, these
problems are magnified by the current trend to deeper neural
networks [10], [11], [12], where the vanishing gradient prob-
lem [13] is highly pervasive. Albeit skip-connections have
been proved to work out this limitation and provide other
benefits during the training process [14].

When working on classification problems, in general, the
performance of the model is measured by metrics, such as
the accuracy, using a test set. However, due to data chal-
lenge, the number of samples in the test set is probably
insufficient, and thus these metrics are not robust enough
to properly measure the performance of the model. In addi-
tion, interpretability is especially complex in DL models,
making demanding to understand the outputs generated by
the model. For this reason, it is often complicated to trust
DL model’s predictions, particularly in the medical domain,
where clinical decision-making relies heavily on evidence
interpretation [6].

In this study, we demonstrate the effectiveness of using
information theoretic concepts [15] to improve the inter-
pretability of DL models when working with small sets of
labelled data. This allows us to also identify overfitting in
DL models, which could not be assessed with traditional
classification metrics, due to the reduced number of samples
in the test set. To the best of our knowledge, this kind of
methodology has not been previously reported for a small
dataset.

In order to evaluate this methodology, several experimental
configurations have been carried out to classify samples from
a plantar thermogram dataset for Diabetic Foot Ulcer (DFU)
detection [16], [17], [18] as case study. This type of studies
aim at predicting the location of a possible future wound,
by analyzing the temperature pattern of the entire plantar
aspects of both feet. Abnormal patterns may indicate a foot
disorder, such as peripheral arterial disease, neuropathy, and
infection among others [19], [20]. The main goal of our
approach is to identify the most suitable model for the classi-
fication task among those implemented. However, interesting

observations revealed some additional contributions which
are summarized as follows:

• The analysis of neural networks from the framework
of information theory allows us to identify promising
models in such a way that it is not necessary to rely
exclusively on classification metrics.

• This analysis is affordable with a scarce dataset, provid-
ing a means to identify the different features presented
in the state-of-the-art, which has been analyzed with
popular datasets.

• The use of skip-connections indicates that some layers
may be irrelevant, and the information is exclusively
transmitted through these skip-connections. In order to
evaluate such behavior, a visualization tool is proposed
to estimate the similarity between filters in a convolu-
tional layer.

• In addition to being able to identify cases of overfitting,
the underfitting is also noticeable based on this analysis.

• Data normalization performed to improve temperature
patterns, which is acceptable for our application, looks
promising and allows the unification of independent
datasets.

This paper is structured as follows. A state-of-the-art
review is provided in Section II. A description of the methods
used for the analysis, the DL architectures and the dataset are
presented in Section III. Section IV presents the experimental
configuration and process. The results from the different
experiments are reported in Section V. Finally, the conclu-
sions are drawn in Section VII.

II. RELATED WORK
As previously mentioned, the early stage detection of
DFU [16], [17] constitutes a challenging medical analysis
scenario for the classification task. Although extensive lit-
erature can be found regarding the application of DL for
wound classification [21], and particularly for diabetic ulcer
identification [22], [23], the use of thermal imaging for DFU
detection is an emerging area of research. The main challenge
associated to this task is related to the lack of datasets contain-
ing enough curated information to train DL models. This is
partially due to the lack of standardized acquisition protocols
to generate high-quality data.

Currently, one of the largest DFU detection oriented
datasets is the Diabetic Foot Ulcers Grand Challenge
(DFUC 2020) [24]. This database is focused on locating
ulcers that are already visible and contains 4000 visible
images, showing close-ups of the foot, which are equally split
for training and testing (2000/2000). This dataset has been
widely used and tested using various state-of-the-art mod-
els [25]. The model created in [26] reported the best results
(an F1-Score of 74.3%). Furthermore, other public dataset
can be found, containing 754 visible images of healthy and
diabetic ulcer skin from different patients [27]. This dataset
has been comprehensively evaluated providing an F1-Score
over 97% at best [28]. However, the differing imaging
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modality and the scenario captured, prevent the use of this
type of dataset on our intended application.

Regarding Diabetic Foot Thermograms, the INAOE
(Instituto Nacional de Astrofísica, Óptica y Electrónica) ther-
mogram database [16], released on December 2019, contains
infrared images from 122 diabetic and 45 non-diabetic sub-
jects. This database has been widely used for the classifi-
cation task. Machine learning and Deep Neural Networks
(DNNs) were studied applying a first step of segmentation,
from which a vector of features was extracted, and then
used as input [29]. The reported accuracy was close to
100% when using more complex models previously trained
with another dataset. In addition, the image enhancement
effect was reported for the detection of the diabetic foot
using several state-of-the-art Convolutional Neural Networks
(CNNs) [30], in which an F1-Score of 95%was achievedwith
MobileNetV2. At the same time, a feature extraction from
the temperature map was carried out for classification using
ML models. In this case, an F1-Score of 97% was reported
as the best result when using AdaBoost and 10 features. Fur-
thermore, three state-of-the-art DL architectures were studied
to classify subjects with diabetes [31]. However, the authors
acknowledged the issue associated to these complex models,
which require large amount of data to train the thousands
of parameters of the model, since the INAOE dataset is not
large enough to train these models. For this reason, authors
proposed an augmentation technique based on Fourier trans-
form, achieving values above 95%, and even a perfect score
of 100% with ResNetV2.

The high dependence of these models on the amount of
data complicates their evaluation and data augmentation is
the most commonly applied technique. However, the study of
DNNs from a theoretical framework is a suitable alternative,
validating empirical results with theoretical concepts. DNNs
were previously expressed as information theoretic concept,
considering a trade-off between compression and prediction,
based on the Information Bottleneck (IB) method [32]. Thus,
DNNs find a maximally compressed mapping of the input
variable, preserving as much as possible the information on
the output variable. In this way, Schwartz-Zi et al. [15], moti-
vated by the IB framework, demonstrated the effectiveness of
using visualization tools for a better understating of the train-
ing dynamics, learning processes and internal representations
in DL.

III. MATERIALS AND METHODS
In this section we expose the different architectures explored
in our analysis, as well as how Mutual Information (MI) and
saliency maps were used in our approach to work with small
datasets. We also introduce the thermal image databases we
have used and discuss how they have been improved and
combined.

A. PROPOSED NETWORK ARCHITECTURE
Most popular network architectures for image classification
tend to use convolutional layers in the first steps of the

FIGURE 1. Proposed network architectures in this work for DFU
classification. (a) Architecture proposed for classification where the
convolutional layers are provided by the pre-trained AE. (b) Convolutional
AE proposed where the skip connections are optional depending on the
experiment.

process (e.g., ResNet [33], VGG [34]) to make a representa-
tion and reduce the amount of information, generating a latent
space Z with lower dimensionality than the input space X .
Reducing dimensionality of the input decreases the number of
parameters to be used when training the network, simplifying
the overall classification process. Following this motivation,
an architecture based on a first stage of encoding, TE ∈
{E1,E2,Z }, followed by a classifier, TCl ∈ {L1,L2,L3,L4},
was designed. Fig. 1(a) illustrates an example of such archi-
tecture. Since the final goal is to classify images, the training
objective is defined as follows:

argmin
θ

L(f̂ (; θ )), (1)

where θ is the parameter of f̂ (; θ) model and L is the Cross
Entropy (CE) loss function:

CE(ŷ) = −
∑
c

λc1(y = c) log(p(ŷ)), (2)

where ŷ = f̂ (x; θ ), 1(.) is the indicator function and p(ŷ)
denotes the softmax probability of sample x. The ground truth
label corresponds to y and c denotes the class category whose
weight is indicated by λc.
When working with small datasets, transfer learning

improves the classification performance of the model by
using a previously trainedmodel, tuning it to fit the classifica-
tion task with the samples being studied [35]. The initial state
θ0 is generated from a training process with another dataset,
which is usually larger and more complete.
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In this study, an AutoEncoder (AE) architecture [36],
depicted in Fig. 1(b), has been used to apply transfer learning
from a pre-trained AE to the first layers of our classifica-
tion architecture Fig. 1(a). AEs are characterized by three
main differential components: the encode path, the bottle-
neck, which is the compressed latent space in the AE, and
the decode path. The encode and decode paths correspond
to a series of layers,

{
TE1 , . . . ,TEL

}
and

{
TDL , . . . ,TD1

}
,

respectively, where L is the number of layers. An encoder is
composed by the encode path following by the bottleneck, i.e,
it corresponds to TE ∈

{
TE1 , . . . ,TEL ,TZ

}
and the decoder is

composed by the decode path. Fig. 1(b) illustrates an example
of a convolutional AE, based on U-Net architecture [37],
which was used in our experiments.

B. INFORMATION PLANE ANALYSIS
In order to study the evolution of the models we are propos-
ing, Information Plane (IP) [15], [32] has been used. IP is
a visualization tool used to analyze how the estimation of
MI [38] of a layer T , from a DNN with the input X and target
Y , changes with the training epoch t [15], [39]. This type
of analysis will increase the interpretability of the model by
using information theory.

Regarding MI estimation, noted as I(.;.), it is often nec-
essary to estimate the Probability Mass Function (PMF) by
applying, for instance, a binning method [40]. However, the
estimation of PMF in high-dimensionality data, which is
common in DL image classification problems, is a compu-
tationally demanding task. Furthermore, the PMF estimation
for a scarce dataset is not robust enough. Giraldo et al. [41]
proposed a framework for data entropy estimation using
infinitely divisible kernels and the axiomatic characteriza-
tion of Renyi’s α-order entropy, without assuming that the
probabilities of events were estimated. Wickstrøm et al. [42]
proposed to use the kernel-based MI estimator for the IP
estimation. This kernel-based estimator is mathematically
well-defined and computationally efficient, being a good
choice for DNNs, where the output layer tends to have high-
dimensionality. For this reason, we will use this approach in
our system.

In this study, we are interested in using the Shannon’s
entropy definition and, accordingly, the limit α → 1 in the
kernel-based estimator [41] was used to approximate the gen-
eralized Renyi’s entropy to the Shannon’s entropy [42], noted
as H (.). Finally, for the kernel-based IP estimation, a library
(IPDL1) was developed whose workflow is integrated to run
in PyTorch [43].

1) INFORMATION PLANE EVOLUTION
The evolution of the IP estimation during the training process
contains two phases [15]. In the first phase, fitting phase, the
layers increase the information on Y (i.e. I (T ;Y ) increases).
During the second phase, compression phase, the layers
reduce the information on X , (i.e. I (X;T ) decreases). The

1https://github.com/mt4sd/IPDL

TABLE 1. Dataset summary.

compression phase is linked to generalization, where irrel-
evant information is compressed to prevent overfitting [15].
Nevertheless, the link between compression and generaliza-
tion is still under discussion [44].

2) DATA PROCESSING INEQUALITY
Due to the architecture of a DNN, where the output of a layer
Ti depends on the output of layer Ti−1, a Markov Chain is
formed [15], [42], [45]. This information path should satisfy
the following Data Processing Inequality (DPI):

I (X;T1) ≥ I (X;T2) ≥ . . . ≥ I (X;TL),

where L is the number of layers in the DNN.

C. SALIENCY MAP VISUALIZATION
There are different approaches to compute importance scores
for generating a feature-importance map (saliency map). The
reason for visualizing a saliency map for a specific image
is to try to gain some understanding of what features our
model detects, and it is widely used for Convolutional Neural
Networks (CNN). In this work, DeepLIFT algorithm was
employed [46]. This algorithm assigns importance scores,
or attributions, by looking at the differences of the output
with respect to the reference output in terms of differences
between inputs and their reference inputs. This means that,
given 1t as the difference between the output of a neuron
xi for a given input with its reference output, it can assign
feature contribution scores C1xi 1t to the differences of the
activations of neurons 1xi:

n∑
i=1

C1xi 1t = 1t,

where n is the number of neurons in the intermediate layer or
set of layers that are necessary and sufficient to compute t .
Note that C1xi 1t can be non-zero even when ∂t/∂xi is zero
which may occur in integrated gradients methods [47].

In addition, DeepLIFT manages to compute these contri-
bution scores by specifying some rules, which are discussed
in detail in [46]. In this work, Rescale rule, which applies
to nonlinear transformations such as ReLU or Sigmoid, was
employed since the implementation used from Captum sup-
ports this rule [48].

D. INFRARED THERMAL IMAGE DATASET
With the purpose of testing our approach in a binary classi-
fication task, diabetic sample or not, a dataset composed by
images acquired by infrared thermography has been gener-
ated by the integration and normalization of existing avail-
able datasets. These datasets contain thermal feet images
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FIGURE 2. (a) Histograms of a pair of images (T0 and T5) from the same
subject extracted from the IACTEC dataset. The temperature of each foot,
left (LF) and right (RF) foot, and environment (Env) is detailed on the sides
in degrees Celsius. (b) Thermal maps of T0 and T5 from such subject.

from diabetic and non-diabetic subjects, as summarized in
Table 1. The INAOE dataset was employed to support the
analysis carried out to evaluate the performance of different
types of architectures. The dataset was originally intended
to study how the temperature is distributed in the plantar
region from diabetic and non-diabetic subjects, and how those
differences can be measured. The dataset is composed by
167 volunteers, 105 female and 62 male, with a mean age
of 27.76± 8.09 in the control group and 55.98± 10.57 from
diabetic group. For the acquisition, the authors used two dif-
ferent infrared cameras (FLIR E60 and FLIR E6). As stated
by the authors, the dataset is slightly unbalanced towards
diabetic cases that almost tripled those from the control
group.

In order to balance the number of samples per class we inte-
grated a second dataset, generated by IACTEC,2 the technol-
ogy center associated to the Astrophysical Research Institute
from the Canary Islands (Instituto de Astrofísica de Canarias,
IAC).3 This dataset [17] contains 74 infrared thermal images,
captured from 37 non-diabetic volunteers, 15 female and
22 male, with a mean age of 40 ± 8 in a range between
24 and 60 years old. This dataset was acquired using a TE-Q1
Plus thermal camera from Thermal Expert (i3system Inc.,
Daejeon, Republic of Korea). Imageswere saved using 16-Bit

2https://www.iac.es/es/observatorios-de-canarias/iactec
3https://www.iac.es/en

FIGURE 3. (a) Reference histogram. (b) Example of the histogram
matching processing for a single subject.

PNG format with a spatial resolution of 384 × 288 pixels.
The acquisition campaign was carried out in November 2020,
acquiring two sets of images per subject. The first image (T0)
was captured immediately after the person becomes barefoot
and sits with legs extended forward or lies down in a supine
position with the feet off the ground. The second image was
taken five minutes later (T5), meanwhile the subject was at
the same resting position.

1) DATA PREPROCESSING
The samples from INAOE dataset were saved on CSV format
and feet from the same person were separated into different
files. Thus, images were preprocessed to unify both feet into
the same images. Additionally, the same spatial resolution
used in the IACTEC dataset was applied. Finally, the resulting
thermal images were normalized and saved as 8-bit PNG.
Normalization was performed as follows:

x ′i = (xi ∗ 255)/xmax ,

where x is the pixel value, the subscript i represents the pixel
index and xmax is the max value in the image.

2) DATA MERGING
Since both datasets were acquired under different ambient
conditions and using different devices, it was necessary to
standardize them in a meaningful way. For this purpose, a his-
togrammatching process was used over all images, so that all
match a reference histogram [49]. Histogram matching is a
useful technique when the contrast level of a group of images
has to be unified. As we aim to analyze spatial features rather
than temperature values, histogram matching will not distort
the information contained on the images for the purpose of
our analysis.
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TABLE 2. Summary of the proposed experiment configurations.

In this way, the IACTEC dataset was established as refer-
ence, since it offers a well-known acquisition protocol [17].
Fig. 2(a) illustrates histograms of T0 and T5 from the
IACTEC dataset. As observed, the data distributions are sim-
ilar at T0 and T5. Nevertheless, the images at T5 tend to have
a better qualitative representation of the temperature pattern
in the feet (Fig. 2(b)), being more visible to the naked eye.
For this reason, the reference histogram was computed using
the T5 samples from various subjects. These samples were
selected after a qualitative visual inspection of the complete
dataset, selecting 6 initial samples. Then, the histogram dis-
tributions were analyzed to obtain the reference, using the
skewness (Skew) and kurtosis (Kurt) statistics. As can be seen
in Fig. 2(a), a high-rate of T5 data distributions are nega-
tively skewed (or left-skewed). Analyzing the initial selected
samples, the optimal Skew ranges from−0.05 to−0.4, while
Kurt achieved a maximum value of −0.85. Thus, 12 images
that fulfilled those requirements were selected as references.
The average histogram, ĥ, from those images was obtained as
follows:

ĥi =
1
N

N∑
j=1

hij

where N is the number of samples and hi represents the value
of the i-th bin of the original histogram. In this experiment,
the number of bins for histogram computation was set to 15.
Fig. 3(a) illustrates the reference histogram, while Fig. 3(b)
shows the distribution of the pixel values and the examples
images before and after performing the histogram matching.
The processed histogram was quite similar to the reference
histogram, offering an improvement in the visual interpreta-
tion of the temperature patterns.

As expected, the image contrast increases by applying
the histogram matching. Thus, temperature patterns in both
datasets were more visible, having the entire dataset sim-
ilar contrast. Finally, histogram matching was applied to
the IACTEC images to obtain exactly the same contrast
that in the processed INAOE images, so both datasets were
modified. In the IACTEC dataset, the changes are sub-
tle, but a qualitative improvement was observed in the
samples.

IV. PROPOSED EXPERIMENTAL CONFIGURATIONS
In order to evaluate our approach for classifying DFU ther-
mal images as diabetic vs non-diabetic, and how it can be
applied to different scenarios, several experimental config-
urations were defined based on the architecture depicted in
Fig. 1(a). These configurations can be divided into two main

categories: using the pretrained encoder, identified by ‘P’,
and not using it (NP). Table 2 shows the summary of the
proposed configurations that are discussed in the following
sections. In addition, a description of the fine-tuning pro-
cess employed to generate the pretrained encoder is detailed
below.

A. AUTOENCODERS FOR FINE-TUNING
For the experiments where transfer learning was applied,
an AE was trained. Subsequently, the encode path layers
were used as TE in the proposed model to classify the
DFU dataset (see Section III-A). The main advantage of
AEs is that a labelled dataset is not required. However,
in this work, the main reason to use AEs was the evaluation
of skip-connections technique and its effect on the com-
pressed representation of the input, which has been studied
in Section V-B.
Considering this approach, AEs were trained to reconstruct

an input X from a compressed representation Z (i.e., the com-
pressed latent space from the bottleneck TZ ). Thus, applying
image reconstruction is straightforward, as labeled samples
are not necessary. Given an output X ′ = f̂ (X; θ ), representing
the reconstructed image, the model is evaluated by comparing
X ′ with the original one X , using the Mean Square Error
(MSE). Thus, the loss function, L in (1), is replaced by:

MSE(f̂ (X; θ),X ) =
1
N

∑
x∈X

(x − f̂ (x; θ))2, (3)

where N is the number of samples in the dataset.
This training process has been carried out in two steps:

a first training using a dataset with a large number of sam-
ples (i.e., the reference dataset) and a second fitting step
where the AE was trained using the DFU dataset. Transfer
learning should be applied in the same domain of the target
dataset [50]. However, since the INAOE dataset [16] is the
only public thermogram dataset for DFU, currently, it is
not possible to obtain another dataset in the same domain.
Therefore, Fashion-MNIST (FMNIST) [51] was selected as
the reference dataset for pretraining. It consists on a large
dataset of grayscale images with a black background and a
normalized histogram, being a dataset with similar features to
our preprocessed dataset. Even when the topic of the dataset
(i.e., fashion-related elements) is not associated to our data,
the amount and quality of its samples have demonstrated in
our experiments to be robust for obtaining coherent feature
extraction filters in Z .

B. EXPERIMENT DESCRIPTIONS
In this section, the different experiments depicted in Fig. 4 are
described in details, including each network’s architecture,
as well as their most relevant hyperparameters.

1) EXPERIMENT 1, PCAE
A Pretrained Convolutional AE without skip-connections
(PCAE) was used to generate the encoder for DFU classifica-
tion. The architecture of this convolutional AE is illustrated
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FIGURE 4. The different configurations for the experiments, where the
pretraining phases were done using AEs.

in Fig. 1(b), excluding the skip-connections. The encoder
contains the convolutional layers, with convolutional kernel
size (K) of 5 × 5 with stride and padding of 2. The decoder
contains upsample layers, using 2D nearest neighbor interpo-
lation, followed by convolutional layers withK of 3×3, with
stride and padding of 1. The number of filters in each layer
of the encoder path corresponds to 6, 8, and 16 respectively.

2) EXPERIMENT 2, PCAES
A Pretrained Convolutional AE, similar to the previous case
but including skip-connections (PCAES) was employed. This
experiment uses the architecture illustrated in Fig. 1(a,b),
applying skip-connections.

3) EXPERIMENT 3, PFCAE
A Pretrained AE of fully-connected layers (PFCAE) was
defined for the DFU classification encoder. The encoder of
this AE is conformed by four fully-connected layers TE ∈
{64× 64, 1024, 512, 256}. Thus, the first layer corresponds
to the input layer, defined by the image size of the dataset
(see Table 1) and, in this case, Z ∈ R256.

4) EXPERIMENT 4, NPCE
This classification model architecture is similar to the ones
obtained in PCAE and PCAES experiments. However, the
classification model uses a Non-Pretrained Convolutional
Encoder (NPCE).

5) EXPERIMENT 5, NPNE
This is the baseline approach, in which there is not a latent
space generated from an encoder, being the original image
the input of the classifier. This experiment will be referred to
as NPNE.

V. EXPERIMENTAL RESULTS
The results presented in this section have been obtained using
a batch of 128 samples for training and 32 samples for testing.
The test set is balanced, taking 16 samples from the control
group and the rest from diabetic group. ADAMoptimizer [52]
was used as optimizer for the DNN training. The initial
learning rate (lr) was set to 5e−4 and the parameters to control
exponential decay rates for themoment estimation, β1 and β2,
were set to 0.9 and 0.999 respectively. The learning rate

TABLE 3. Classification metrics results for each of the experiments.

FIGURE 5. Loss value in training (left) and testing (right): (a) FMNIST
dataset and (b) DFU dataset.

decays by κ every iteration t:

lrt = κ ∗ lrt−1,

where κ was set to 0.999.
In order to evaluate the performance of the classification

models, sensitivity, specificity, precision, and accuracy were
estimated. Using these metrics, the classification results of
the experimental configurations are summarized in Table 3.
According to the estimations of the implemented metrics,
all models seem promising considering the task at hand.
A comprehensive analysis, described below, has been carried
out to characterize the different models and truly identify the
most promising ones.

A. DFU CLASSIFICATION ANALYSIS
The classification task was analyzed to check whether
the models generated in the proposed configurations are
as promising as suggested by the classification metrics
shown in Table 3. In the experiments where a pretrained
AE, which is detailed in Section IV-A, was used, the
encode path and bottleneck were used for initializing the
encoder in the classification model. Hence, the layers TE ∈
{E1,E2,Z } have been initialized using the AE configuration,
see Fig. 1(b).

In those experiments that use a pretrained encoder (i.e.,
PCAE, PCAES and PFCAE), the AEs exhibit good perfor-
mance, taking into account the evolution of the loss value
depicted in Fig. 5. The MSE (3) loss value, which represents
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FIGURE 6. Qualitative results in different iterations during FMNIST
training: (a) 24 iterations, (b) 170 iterations and (c) 250 iterations.

the error between desired output X and the reconstruction
X ′, tends to decrease in all configurations. This behavior is
present in both cases, training and testing, suggesting that
overfitting does not occur in the AEs. As can be seen in
Fig. 6, the final qualitative result of X ′ is satisfactory for
the different configurations, being worse in the AE based
on fully-connected layers (PFCAE) as expected. Taking into
account these results, models that used the pretrained encoder
can be expected to have good performance.

Subsequently, the classification model has to be evaluated
and, as previously mentioned, this analysis was supported by
the IP estimation with the main limitation that our test set was
sparse. Regarding the kernel-based MI estimation, the Radial
Basis Function (RBF) kernel was applied. In these experi-
ments, the kernel width (σ ) selection was carried out bymaxi-
mizing the kernel alignment loss between the non-normalized
Gram matrix of a given layer Kσ and the label matrix Ky,
A(Kσ ,Ky), as proposed by [42]. Thus, they choose the opti-
mal σ as:

σ ∗ = argmax
σ

A(Kσ ,Ky). (4)

Equation (4) was performed on each epoch t using 200 σ
values from 0.1 to 10 times the mean distance between the
samples in one mini-batch, as done in [42]. To stabilize the
σ values across mini batches, an exponential moving average
has been used.

Regarding the configurations, the loss value in the iteration
t is illustrated in Fig. 7 (left side) where, excluding NPNE,
convergence to an optimal solution is achieved based on CE
loss value. In the NPNE case, the simplest case where the
encoder was discarded, it is clear that the model is overfitting,
decreasing the training loss value and increasing the test loss
value per iteration (Fig. 7(e)).

The IP trajectories shown in Fig. 7 (right side) were used
just in the classifier layers TCl ∈ {L1,L2,L3,L4}, discarding
TE . In the experiments where a pretrained AE was used,
the input X for computing MI in IP trajectories is Z . In the
NPCE and NPNE experiments, the input is the original X .
Note that the output Y is the test set which, as mentioned
before, is balanced for both classes, NC1 = NC2 . Thus, the

FIGURE 7. Loss error (left) and IP estimation (right) in the different
experiments: (a) PCAE, (b) PCAES, (c) PFCAE, (d) NPCE and (e) NPNE.

theoretical maximum value in I (T ;Y ) is given by log2(C) =
log2(2) = 1.
Analyzing the non-pretrained experiments (NPCE and

NPNE), Fig. 7(d,e), it can be observed that NPCE has too
many iterations where the training CE (2) loss value was
not able to converge, but it does afterward. The significant
difference between training and testing losses that is depicted
in Fig. 7(d,e) left, which is gradually increasing, indicates that
the model is facing overfitting and perhaps underfitting. It is

124380 VOLUME 10, 2022



A. Hernandez-Guedes et al.: Performance Evaluation of DL Models for Image Classification Over Small Datasets

crucial and results in poor progress and less generalization
in labeled data. However, this problem is not so noticeable
from Fig. 7(d) left. However, the MI estimation, depicted in
Fig. 7(d) right, shows a violation in DPI (see Section III-B2),
where I (X ,L2) < I (X ,L3). This is clearly observable in later
iterations after the compression phase. This violation could
be related to the overfitting in the model during the com-
pression phase as Wickstrom et al. suggested [42]. Finally,
the I (T ;Y ) estimation is far from the theoretical maxi-
mum value, indicating that the models are not performing
properly.

Regarding NPNE, there is a clear overfitting as observed
in Fig. 7(e) left, where the test CE loss value increases
while the training CE loss value constantly decreases. The
IP trajectories show that the estimation has an adjustment
process. However, during training, such estimation gets stuck
in a closed range, i.e, the estimation fluctuates constantly
without showing an increase or decrease pattern. Considering
this evidence, this might be a sign that the model is also
underfitting at this moment, the number of parameters is
not enough to characterize the data and accurately capture
relationships between the input and target. At the same time,
there is a DPI violation in Fig. 7(e), where I (L3;Y ) >

I (L4;Y ). Nonetheless, the range is so close that it can be
due to the estimation of the metrics. Therefore, it can be
concluded that non-pretrained models are not as promis-
ing as indicated by the performance metrics presented in
Table 3.
From the pretrained approaches using transfer learning,

the different models show a decreasing test CE loss value,
as shown in Fig. 7(a,b,c), achieving lower values than non-
pretrained approaches. Additionally, IP trajectories of PCAE,
PCAES and PFCAE (Fig. 7(a,b,c)) show a constant fitting
phase in most layers, discarding L1 in PCAE and PCAES.
In such cases, there is a decreasing trend in I (X;T ) in the
earliest iterations, followed by a fitting phase. DPI viola-
tions were not observed, albeit the IP trajectories of L2 and
L3 are close in PCAE and PCAES, overlapping each other.
This overlap might be interpreted as both layers being sim-
ilar, indicating that the model could be further reduced.
The IP trajectories of PCAE and PCAES are similar, hav-
ing both similar pattern. However, PCAES has the same
problem that the non-pretrained approach: the I (T ;Y ) is far
from the theoretical maximum value. On the other hand,
PCAE and PFCAE have the closest values to the maxi-
mum theoretical value of I (T ;Y ). As a conclusion, trans-
fer learning works even when the reference dataset does
not belong to the same domain as the target dataset, the
DFU dataset.

B. SKIP-CONNECTION EFFECTS IN COMPRESSED
REPRESENTATION
Following the results of the previous section, it has been
possible to conclude that PCAES exhibited the worst per-
formance among the models where transfer learning was
applied. In this section, a comparison between PCAE

FIGURE 8. Saliency maps with features contribution in F i
Z filters for DFU

classification by DeepLIFT. The figure (a) corresponds to PCAE and
(b) belong to PCAES.

and PCAES is carried out in order to understand why
skip-connections have had such a negative impact on
the obtained compressed latent space Z . In both cases,
Z corresponds to an output of convolutional filters. Both
AEs were trained identically in such a way that it can
be considered a fair comparison between both experi-
ments, with skip-connections being the only differentiating
factor.

Taking advantage of the fact that these models are able
to accurately classify the samples, DeepLIFT was applied to
identify which features from Z are being taken into account
by the classifier, i.e., generating a saliency map in Z . This
saliency map computes an importance score using a reference
image. The selection of the reference image is critical, and
the result will depend on this parameter, as it defines what
is of interest in the input. For the DFU dataset, an all-zeros
input was used as reference, representing the black back-
ground. This is represented in the saliency map of Fig. 8(a)
and Fig. 8(b) for PCAE and PCAES configurations, respec-
tively. In order to facilitate the interpretation of Fig. 8 a
binning-clustering process was applied for 15 equidistant
bins.

These results show that the feature contribution in both
cases, control and diabetic group, is quite similar, obtaining
saliency maps with similar patterns and conjugated values,
since hot values (green color) in control tend to be cold
values (blue color) in diabetic subjects. In PCAE, Fig. 8(a),
most filters have spatial irregular patterns in the feature
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FIGURE 9. IP estimation in the FMNIST pretraining step: (a) PCAE,
(b) PCAES.

contribution estimation. However, F2
Z and F8

Z show a lim-
ited activation, having a low feature contribution. Regarding
PCAES, it can be observed in Fig. 8(b) that there are only
a few relevant filters, F1−4

Z . However, the scale of the fea-
ture contribution by DeepLIFT, depicted in the colorbar in
Fig. 8, differs significantly and is reduced by a factor of 10 in
PCAES.

In addition, the kernel-based MI estimation was applied to
estimate the IP during the FMNIST reconstruction training
using AEs (Fig. 9) and to obtain an interpretation of the
different filters in Z , F iZ , estimating the MI between them
(Fig. 10). As in the previous section, RBF kernel was applied
for kernel-based MI estimation. The σ selection was carried
out using Silverman’s rule [53] that depends on an empirically
determined constant, γ , which has been set γ = 2 in this
work.

As expected, the IP trajectories (Fig. 9), generated applying
the kernel-based MI estimation, in the different AEs, shows
that I (X ,T ) ≈ I (T ,Y ). This is due to the fact that the desired
output is roughly similar to the input. Those symmetrical
trajectories are highly presented because of the high-quality
reconstruction in few iterations. In order to verify that these
estimations are correct, the DPI principle should be satisfied
on the encoder and decoder layers [45]:

I (X ,E1) ≥ . . . ≥ I (X ,EL) ≥ I (X ,Z ),

I (Z ,Y ) ≤ I (DL ,Y ) ≤ . . . ≤ I (D1,Y ).

Observing Fig. 9, a violation of the DPI principle ocurred
in PCAES, as I (Z ,Y ) > I (D2,Y ). However, the DPI princi-
ple is based on the assumption that a DNN can be interpreted
as a Markov Chain model, but skip-connections link the
encode and decode path (see Fig. 1(b)), as

Di = fDi ([Di−1,Ei]; θDi ),

which is a violation of the Markov property. As a result,
it is not possible to guarantee that Z is the best compressed
representation of the input X in PCAES.

Following our hypothesis, layers with redundant informa-
tion should contain a high MI value and, at the same time,
the filters with low entropy estimation do not contain relevant
information ofX . In order to validate this hypothesis, a visual-
ization tool is proposed for evaluating the similarity between
filters in a convolutional layer. The results are depicted in
Fig. 10 where cells with intense color illustrate that its MI
estimation is close to entropy estimation on each filter (the
diagonal of the matrix). In any case, the Z used as the optimal
representation of X contains minimal redundant information
as well as low entropy. Due to the specific features of the
DFU dataset, where the background is presented as a uniform
black color and images are similar, it is understandable that,
in a low-resolution image, the entropy is low because likely
values are undervalued.

Observing PCAE results, Fig. 10(a), there are two spe-
cific filters, F2

Z and F8
Z , in which entropy values are quite

lower than in other filters. This is probably because the
results of both filters are images with uniform values in
a close range (i.e., images with reduced information). The
saliency maps (Fig. 8(a)) reinforce the conclusions gathered
by studying Fig. 10(a). Thus, it can be concluded that such
filters could be removed without drastically affecting the
classifier.

Regarding PCAES, Fig. 10(b) shows that most filters
from Z contain a low entropy, which means that most acti-
vations are present in limited regions giving as a result a
homogeneous output. Taking this into account, it can be
concluded that PCAES contains homogeneous filters that
offer very limited information. Therefore, it constitutes a
poor representation from input X , which is supported by
that observed in the IP estimation. This would explain the
problems in the classification observed in Fig. 7(b). More-
over, the most complex features correspond to the ones
with higher values in MI estimation, F8,10

Z , as shown in
Fig. 10(b).

VI. DISCUSSION
The lack of sufficient labeled data has several limitations.
There is a trade-off between the number of samples used for
training and those used to validate the model, and thus, it is
difficult to assess whether the model is overfitting. In this
work, this problem is presented since the use of thermal
imaging for early stage detection of DFU is an emerging area
of research, and there is a lack of data for the use of DNNs.
As a consequence, the different experiments proposed in this
work show some striking metrics, as in Table 3, where some
perfect scores can be observed. These results are difficult
to justify. On the one hand, the test set, which is composed
of only 32 samples, might be a non-representative subset to
evaluate the models. On the other hand, the DNN models
could be overfitted.

For the aforementioned reasons, DNNs were analyzed via
the theoretical framework of the IB principle, which was
previously studied and validated using popular datasets with
large number of samples for testing the models. This analysis
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FIGURE 10. MI estimation between different filters in (a) PCAE and (b) PCAES. The trace of the heat-map represents I(F i
Z ; F i

Z ) = H(F i
Z ). The

colorbar applies to both charts.

was implemented using the IP, which has been estimated
by the scarce test set and a kernel-based MI estimation,
to validate the different models proposed. Transfer learning
was applied to some of these models and those were expected
to perform better.

As a result, theoretical characteristics were identified,
already discussed in the state-of-the-art, in those experiments
where transfer learning was applied in a way that validated
the analysis for small datasets. As expected, transfer learning,
even using a dataset with different target but certain features
in common, improved the performance of the models. How-
ever, in one of these (PCAES), some limitationswere detected
which have cast doubt on its performance. Summarizing,
it has been observed that skip-connections worsened the com-
pressed space of X , in concordance with the IB theoretical
framework. In addition, this conclusion was further supported
by the use of saliencymaps generated in Z byDeepLIFT and a
MI estimation between the filters, where it was observed that
many latent space filters do not contribute to the classification
of the samples.

In those experiments where transfer learning was not used,
the results were erratic and showed behaviors that cannot
be validated following the IB theoretical framework, such as
the DPI violation presented in both experiments, NPCE and
NPNE. Furthermore, it was identified that the NPNE model
was not able to characterize the data, due to the small number
of parameters of this model in comparison with the others.
This could indicate an underfitting problem, as the model
was not complex enough to accurately capture relationships
between the input and the target.

VII. CONCLUSION
The great potential of supervised models is found in using
datasets with a large number of samples, so that the model

can generalize. Nonetheless, this is not always possible, espe-
cially in the medical field where sample collection depends
on time-consuming protocols. In this work, the use of the
theoretical framework of the IB principle is proposed and
tested for evaluating models, implemented using different
architectures, in which the training dataset is rather small
in terms of samples. For those cases, even when tradi-
tional classification metrics show great performance, our
analysis clarifies whether those metric results are due to
overfitting.

We conducted several experiments, designed with different
DNN architectures, including the usage of transfer learning in
three of them. As results, the classification evaluation metrics
were promising in all experiments. When analyzing those
experiments, using mainly IP analysis, we could conclude
that just two out of the five experiments (i.e. PCAE and
PFCAE) showed a consistent performance. This allows us
also to conclude that the results obtained using just clas-
sification metrics on the other three experiments were not
reliable.

Analyzing the results for our experiments, we can observe
that they all contain several characteristics, already discussed
in the state-of-the-art using a large dataset, that support the
validity of our analysis. The analysis based on kernel-based
MI has shown the different IP phases of DNN, specially
in Z , as discussed above. In order to conclude which models
have a better performance, the estimation I (T ;Y ) has been
compared with the maximum theoretical value, which is a
straightforward method to estimate in classification problems
for a balanced test set.

Finally, the effect of skip-connections was studied since
it constitutes the differentiating factor in PCAES. For this
analysis, an IP estimation in the pretrained AE was used
for concluding that the skip-connections is a violation of
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the Markov property which is fundamental for the IB prin-
ciple. In addition, MI estimation between the convolutional
filters in Z was carried out to estimate which filters pro-
vide appropriate information, supported by the saliency maps
obtained fromDeepLIFT. In conclusion, the skip-connections
in PCAES resulted in Z , being a worse representation of
compressed X . This approach might be interesting to obtain
more efficient CNN architectures when the dataset available
is scarce by, for example, applying regularization based on
the information obtained by this analysis.

As for future work, we plan to extend the current evaluation
to include new and different datasets, which fit the scope
of being scarce. Finally, we would like to evaluate how the
PCAE and PFCAE models work with larger DFU datasets,
provided that such data would be available in the future.
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