Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119785
Campo DC Valoridioma
dc.contributor.authorFreire-Obregón, Daviden_US
dc.contributor.authorLorenzo-Navarro, Javieren_US
dc.contributor.authorSantana, Oliverio J.en_US
dc.contributor.authorHernández-Sosa, Danielen_US
dc.contributor.authorCastrillon-Santana, Modestoen_US
dc.date.accessioned2022-12-19T09:34:59Z-
dc.date.available2022-12-19T09:34:59Z-
dc.date.issued2022en_US
dc.identifier.isbn9781665490627en_US
dc.identifier.issn1051-4651en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/119785-
dc.description.abstractPredicting an athlete's performance based on short footage is highly challenging. Performance prediction requires high domain knowledge and enough evidence to infer an appropriate quality assessment. Sports pundits can often infer this kind of information in real-time. In this paper, we propose regressing an ultra-distance runner cumulative race time (CRT), i.e., the time the runner has been in action since the race start, by using only a few seconds of footage as input. We modified the I3D ConvNet backbone slightly and trained a newly added regressor for that purpose. We use appropriate pre-processing of the visual input to enable transfer learning from a specific runner. We show that the resulting neural network can provide a remarkable performance for short input footage: 18 minutes and a half mean absolute error in estimating the CRT for runners who have been in action from 8 to 20 hours. Our methodology has several favorable properties: it does not require a human expert to provide any insight, it can be used at any moment during the race by just observing a runner, and it can inform the race staff about a runner at any given time.en_US
dc.languageengen_US
dc.publisherIEEEen_US
dc.relation.ispartofProceedings - International Conference on Pattern Recognitionen_US
dc.sourceProceedings - International Conference on Pattern Recognition [ISSN 1051-4651], v. 2022-August, p. 805-811, (Enero 2022)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.titleTowards cumulative race time regression in sports: I3D ConvNet transfer learning in ultra-distance running eventsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference22nd International Conference on Pattern Recognition (ICPR)en_US
dc.identifier.doi10.1109/ICPR56361.2022.9956174en_US
dc.identifier.scopus85143592292-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid7003605046-
dc.contributor.authorscopusid6507124168-
dc.contributor.authorscopusid57218418238-
dc.description.lastpage811en_US
dc.description.firstpage805en_US
dc.relation.volume2022-Augusten_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2022en_US
dc.identifier.conferenceidevents149966-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,405-
dc.description.sjrq--
dc.description.ggs2-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate17-05-2018-
crisitem.event.eventsenddate18-05-2018-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0001-7511-5783-
crisitem.author.orcid0000-0003-3022-7698-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameSantana Jaria, Oliverio Jesús-
crisitem.author.fullNameHernández Sosa, José Daniel-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
Adobe PDF (6,4 MB)
Vista resumida

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 17-nov-2024

Visitas

105
actualizado el 06-jul-2024

Descargas

13
actualizado el 06-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.