Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/119785
Title: | Towards cumulative race time regression in sports: I3D ConvNet transfer learning in ultra-distance running events | Authors: | Freire-Obregón, David Lorenzo-Navarro, Javier Santana, Oliverio J. Hernández-Sosa, Daniel Castrillon-Santana, Modesto |
UNESCO Clasification: | 33 Ciencias tecnológicas | Issue Date: | 2022 | Publisher: | IEEE | Journal: | Proceedings - International Conference on Pattern Recognition | Conference: | 22nd International Conference on Pattern Recognition (ICPR) | Abstract: | Predicting an athlete's performance based on short footage is highly challenging. Performance prediction requires high domain knowledge and enough evidence to infer an appropriate quality assessment. Sports pundits can often infer this kind of information in real-time. In this paper, we propose regressing an ultra-distance runner cumulative race time (CRT), i.e., the time the runner has been in action since the race start, by using only a few seconds of footage as input. We modified the I3D ConvNet backbone slightly and trained a newly added regressor for that purpose. We use appropriate pre-processing of the visual input to enable transfer learning from a specific runner. We show that the resulting neural network can provide a remarkable performance for short input footage: 18 minutes and a half mean absolute error in estimating the CRT for runners who have been in action from 8 to 20 hours. Our methodology has several favorable properties: it does not require a human expert to provide any insight, it can be used at any moment during the race by just observing a runner, and it can inform the race staff about a runner at any given time. | URI: | http://hdl.handle.net/10553/119785 | ISBN: | 9781665490627 | ISSN: | 1051-4651 | DOI: | 10.1109/ICPR56361.2022.9956174 | Source: | Proceedings - International Conference on Pattern Recognition [ISSN 1051-4651], v. 2022-August, p. 805-811, (Enero 2022) |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
9
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 10, 2024
Page view(s)
105
checked on Jul 6, 2024
Download(s)
13
checked on Jul 6, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.