Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119299
Título: Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images
Autores/as: La Salvia, Marco
Torti, Emanuele
León Martín, Sonia Raquel 
Fabelo Gómez, Himar Antonio 
Ortega, Samuel 
Balea Fernandez, Francisco Javier 
Martínez Vega, Beatriz 
Castaño González, Irene
Almeida Martín, Pablo Julio 
Carretero Hernández, Gregorio
Hernández, Javier A.
Marrero Callicó, Gustavo Iván 
Leporati, Francesco
Clasificación UNESCO: 3314 Tecnología médica
320106 Dermatología
Palabras clave: Skin cancer
Hyperspectral imaging
Deep learning
Disease diagnosis
High-performance computing
Fecha de publicación: 2022
Proyectos: Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial 
Publicación seriada: Sensors (Switzerland) 
Resumen: Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.
URI: http://hdl.handle.net/10553/119299
ISSN: 1424-8220
DOI: 10.3390/s22197139
Fuente: Sensors (Switzerland) [ISSN 1424-8220], v. 22 (19), 7139, (Septiembre 2022)
Colección:Artículos
Adobe PDF (2,44 MB)
Vista completa

Citas SCOPUSTM   

9
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 24-nov-2024

Visitas

77
actualizado el 07-sep-2024

Descargas

30
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.