Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119299
Campo DC Valoridioma
dc.contributor.authorLa Salvia, Marcoen_US
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorLeón Martín, Sonia Raquelen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorBalea Fernandez, Francisco Javieren_US
dc.contributor.authorMartínez Vega, Beatrizen_US
dc.contributor.authorCastaño González, Ireneen_US
dc.contributor.authorAlmeida Martín, Pablo Julioen_US
dc.contributor.authorCarretero Hernández, Gregorioen_US
dc.contributor.authorHernández, Javier A.en_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2022-11-21T12:51:44Z-
dc.date.available2022-11-21T12:51:44Z-
dc.date.issued2022en_US
dc.identifier.issn1424-8220en_US
dc.identifier.urihttp://hdl.handle.net/10553/119299-
dc.description.abstractCancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.en_US
dc.languageengen_US
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificialen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors (Switzerland) [ISSN 1424-8220], v. 22 (19), 7139, (Septiembre 2022)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject320106 Dermatologíaen_US
dc.subject.otherSkin canceren_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherDeep learningen_US
dc.subject.otherDisease diagnosisen_US
dc.subject.otherHigh-performance computingen_US
dc.titleNeural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.3390/s22197139en_US
dc.identifier.pmid36236240-
dc.identifier.scopus2-s2.0-85139909364-
dc.identifier.isiWOS:000867975100001-
dc.contributor.orcid0000-0003-3724-8213-
dc.contributor.orcid0000-0001-8437-8227-
dc.contributor.orcid0000-0002-4287-3200-
dc.contributor.orcid0000-0002-9794-490X-
dc.contributor.orcid0000-0002-7519-954X-
dc.contributor.orcid0000-0003-2028-0858-
dc.contributor.orcid0000-0001-7835-9660-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-3784-5504-
dc.contributor.orcid#NODATA#-
dc.identifier.issue19-
dc.relation.volume22en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Section Intelligent Sensorsen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,803
dc.description.jcr3,847
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Psicología, Sociología y Trabajo Social-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0003-2028-0858-
crisitem.author.orcid0000-0001-7835-9660-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameBalea Fernandez, Francisco Javier-
crisitem.author.fullNameMartínez Vega, Beatriz-
crisitem.author.fullNameAlmeida Martín, Pablo Julio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
Colección:Artículos
Adobe PDF (2,44 MB)
Vista resumida

Citas SCOPUSTM   

9
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 24-nov-2024

Visitas

77
actualizado el 07-sep-2024

Descargas

30
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.