Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/119299
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | La Salvia, Marco | en_US |
dc.contributor.author | Torti, Emanuele | en_US |
dc.contributor.author | León Martín, Sonia Raquel | en_US |
dc.contributor.author | Fabelo Gómez, Himar Antonio | en_US |
dc.contributor.author | Ortega, Samuel | en_US |
dc.contributor.author | Balea Fernandez, Francisco Javier | en_US |
dc.contributor.author | Martínez Vega, Beatriz | en_US |
dc.contributor.author | Castaño González, Irene | en_US |
dc.contributor.author | Almeida Martín, Pablo Julio | en_US |
dc.contributor.author | Carretero Hernández, Gregorio | en_US |
dc.contributor.author | Hernández, Javier A. | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.contributor.author | Leporati, Francesco | en_US |
dc.date.accessioned | 2022-11-21T12:51:44Z | - |
dc.date.available | 2022-11-21T12:51:44Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/119299 | - |
dc.description.abstract | Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints. | en_US |
dc.language | eng | en_US |
dc.relation | Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial | en_US |
dc.relation.ispartof | Sensors (Switzerland) | en_US |
dc.source | Sensors (Switzerland) [ISSN 1424-8220], v. 22 (19), 7139, (Septiembre 2022) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject | 320106 Dermatología | en_US |
dc.subject.other | Skin cancer | en_US |
dc.subject.other | Hyperspectral imaging | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Disease diagnosis | en_US |
dc.subject.other | High-performance computing | en_US |
dc.title | Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.3390/s22197139 | en_US |
dc.identifier.pmid | 36236240 | - |
dc.identifier.scopus | 2-s2.0-85139909364 | - |
dc.identifier.isi | WOS:000867975100001 | - |
dc.contributor.orcid | 0000-0003-3724-8213 | - |
dc.contributor.orcid | 0000-0001-8437-8227 | - |
dc.contributor.orcid | 0000-0002-4287-3200 | - |
dc.contributor.orcid | 0000-0002-9794-490X | - |
dc.contributor.orcid | 0000-0002-7519-954X | - |
dc.contributor.orcid | 0000-0003-2028-0858 | - |
dc.contributor.orcid | 0000-0001-7835-9660 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-3784-5504 | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 19 | - |
dc.relation.volume | 22 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | This article belongs to the Section Intelligent Sensors | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,803 | |
dc.description.jcr | 3,847 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,8 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Psicología, Sociología y Trabajo Social | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Telemática | - |
crisitem.author.dept | Departamento de Ciencias Médicas y Quirúrgicas | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-4287-3200 | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0003-2028-0858 | - |
crisitem.author.orcid | 0000-0001-7835-9660 | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | León Martín,Sonia Raquel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Balea Fernandez, Francisco Javier | - |
crisitem.author.fullName | Martínez Vega, Beatriz | - |
crisitem.author.fullName | Almeida Martín, Pablo Julio | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
crisitem.project.principalinvestigator | Marrero Callicó, Gustavo Iván | - |
Colección: | Artículos |
Citas SCOPUSTM
9
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 24-nov-2024
Visitas
77
actualizado el 07-sep-2024
Descargas
30
actualizado el 07-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.