Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/handle/10553/119299
DC Field | Value | Language |
---|---|---|
dc.contributor.author | La Salvia, Marco | en_US |
dc.contributor.author | Torti, Emanuele | en_US |
dc.contributor.author | León Martín, Sonia Raquel | en_US |
dc.contributor.author | Fabelo Gómez, Himar Antonio | en_US |
dc.contributor.author | Ortega, Samuel | en_US |
dc.contributor.author | Balea Fernandez, Francisco Javier | en_US |
dc.contributor.author | Martínez Vega, Beatriz | en_US |
dc.contributor.author | Castaño González, Irene | en_US |
dc.contributor.author | Almeida Martín, Pablo Julio | en_US |
dc.contributor.author | Carretero Hernández, Gregorio | en_US |
dc.contributor.author | Hernández, Javier A. | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.contributor.author | Leporati, Francesco | en_US |
dc.date.accessioned | 2022-11-21T12:51:44Z | - |
dc.date.available | 2022-11-21T12:51:44Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/119299 | - |
dc.description.abstract | Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints. | en_US |
dc.language | eng | en_US |
dc.relation | Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial | en_US |
dc.relation.ispartof | Sensors (Switzerland) | en_US |
dc.source | Sensors (Switzerland) [ISSN 1424-8220], v. 22 (19), 7139, (Septiembre 2022) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject | 320106 Dermatología | en_US |
dc.subject.other | Skin cancer | en_US |
dc.subject.other | Hyperspectral imaging | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Disease diagnosis | en_US |
dc.subject.other | High-performance computing | en_US |
dc.title | Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.3390/s22197139 | en_US |
dc.identifier.pmid | 36236240 | - |
dc.identifier.scopus | 2-s2.0-85139909364 | - |
dc.identifier.isi | WOS:000867975100001 | - |
dc.contributor.orcid | 0000-0003-3724-8213 | - |
dc.contributor.orcid | 0000-0001-8437-8227 | - |
dc.contributor.orcid | 0000-0002-4287-3200 | - |
dc.contributor.orcid | 0000-0002-9794-490X | - |
dc.contributor.orcid | 0000-0002-7519-954X | - |
dc.contributor.orcid | 0000-0003-2028-0858 | - |
dc.contributor.orcid | 0000-0001-7835-9660 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-3784-5504 | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 19 | - |
dc.relation.volume | 22 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | This article belongs to the Section Intelligent Sensors | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,764 | |
dc.description.jcr | 3,847 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,8 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.project.principalinvestigator | Marrero Callicó, Gustavo Iván | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Psicología, Sociología y Trabajo Social | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Telemática | - |
crisitem.author.dept | Departamento de Ciencias Médicas y Quirúrgicas | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-4287-3200 | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0003-2028-0858 | - |
crisitem.author.orcid | 0000-0001-7835-9660 | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | León Martín,Sonia Raquel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Balea Fernandez, Francisco Javier | - |
crisitem.author.fullName | Martínez Vega, Beatriz | - |
crisitem.author.fullName | Almeida Martín, Pablo Julio | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
12
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
9
checked on Mar 30, 2025
Page view(s)
77
checked on Sep 7, 2024
Download(s)
30
checked on Sep 7, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.