Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118969
Title: Comparison of clustering algorithms for data detection in Multispectral Camera Communication
Authors: Moreno, Daniel 
Majlesein, Behnaz 
Guerra Yanez, Victor 
Rufo Torres, Julio Francisco 
Rabadán Borges, José Alberto 
Pérez Jiménez, Rafael 
UNESCO Clasification: 3325 Tecnología de las telecomunicaciones
Keywords: Clustering
Multispectral
Optical camera communication
Temperature effect
Issue Date: 2022
Publisher: Institute of Electrical and Electronics Engineers (IEEE) 
Conference: 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC 2022) 
Abstract: In this work, the performance of an optical camera communication (OCC) system is compared using several clus-tering algorithms in a cluster-based data detection approach. Furthermore, a multispectral camera is utilized to capture the thermally induced spectral variations in light-emitting diodes (LEDs). Thus, more than one channel can be attained from the same device. The results of this paper prove that using a clustering method can enhance the bit error rate (BER). Finally, different training sets were used to fit the clustering models underlining the impact on the system performance.
URI: http://hdl.handle.net/10553/118969
ISBN: 978-1-6654-0913-1
DOI: 10.1109/WASOWC54657.2022.9798432
Source: 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC 2022), p. 1-5
Appears in Collections:Actas de congresos
Adobe PDF (368,95 kB)
Show full item record

Page view(s)

75
checked on May 18, 2024

Download(s)

29
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.