Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118969
Title: Comparison of clustering algorithms for data detection in Multispectral Camera Communication
Authors: Moreno, Daniel 
Majlesein, Behnaz 
Guerra Yanez, Victor 
Rufo Torres, Julio Francisco 
Rabadán Borges, José Alberto 
Pérez Jiménez, Rafael 
UNESCO Clasification: 3325 Tecnología de las telecomunicaciones
Keywords: Clustering
Multispectral
Optical camera communication
Temperature effect
Issue Date: 2022
Publisher: Institute of Electrical and Electronics Engineers (IEEE) 
Conference: 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC 2022) 
Abstract: In this work, the performance of an optical camera communication (OCC) system is compared using several clus-tering algorithms in a cluster-based data detection approach. Furthermore, a multispectral camera is utilized to capture the thermally induced spectral variations in light-emitting diodes (LEDs). Thus, more than one channel can be attained from the same device. The results of this paper prove that using a clustering method can enhance the bit error rate (BER). Finally, different training sets were used to fit the clustering models underlining the impact on the system performance.
URI: http://hdl.handle.net/10553/118969
ISBN: 978-1-6654-0913-1
DOI: 10.1109/WASOWC54657.2022.9798432
Source: 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC 2022), p. 1-5
Appears in Collections:Actas de congresos
Adobe PDF (368,95 kB)
Show full item record

Page view(s)

35
checked on May 20, 2023

Download(s)

8
checked on May 20, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.