Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/118795
Título: | Seagrass mapping using high resolution multispectral satellite imagery: A comparison of water column correction models | Autores/as: | Mederos Barrera, Antonio Ramón Marcello, J. Eugenio, F. Hernández Pérez, Eduardo |
Clasificación UNESCO: | 2599 Otras especialidades de la tierra, espacio o entorno | Palabras clave: | Depth Invariant Index High Resolution Benthic Maps Sagawa Seagrass Water Column Correction, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | International Journal of Applied Earth Observation and Geoinformation | Resumen: | Satellite remote sensing is an efficient and economical technique for studying coastal bottoms in clear and shallow waters. Accordingly, the main objective of this study is the generation of benthic maps using high spatial resolution multispectral images from the WorldView-2/3 satellites. In this context, one of the main challenges consists of eliminating the disturbances caused in the signal by the atmosphere, the sea surface, and the water column. Regarding the water column correction, there is controversy about its effectiveness to improve the results achieved. To assess the impact of the water column correction in seagrass mapping, two coastal areas with different characteristics have been selected. Specifically, an analysis has been carried out consisting of the assessment of the Lyzenga and Sagawa water column correction models to identify the algorithm that provides the best mapping precision and, additionally, to seek if this pre-processing stage is helpful when classifying the seabed. The classification models selected for the study were: Gaussian Naïve Bayes (GNB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Subspace KNN (S-KNN). Machine learning techniques have proven to achieve better results and, in particular, SVM and KNN models provide the best overall accuracy. The results after benthic mapping have demonstrated, that image classification without water column corrections provides better accuracy (95.36% and 99.20%) than using Lyzenga (73.49% and 97.80%) or Sagawa (82.04% and 99.10%), for Case 2 and 1 waters, respectively. | URI: | http://hdl.handle.net/10553/118795 | ISSN: | 1569-8432 | DOI: | 10.1016/j.jag.2022.102990 | Fuente: | International Journal of Applied Earth Observation and Geoinformation[ISSN 1569-8432],v. 113, (Septiembre 2022) |
Colección: | Artículos |
Citas SCOPUSTM
19
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
15
actualizado el 15-dic-2024
Visitas
91
actualizado el 11-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.