Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/118795
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mederos Barrera, Antonio Ramón | en_US |
dc.contributor.author | Marcello, J. | en_US |
dc.contributor.author | Eugenio, F. | en_US |
dc.contributor.author | Hernández Pérez, Eduardo | en_US |
dc.date.accessioned | 2022-10-10T09:29:11Z | - |
dc.date.available | 2022-10-10T09:29:11Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 1569-8432 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/118795 | - |
dc.description.abstract | Satellite remote sensing is an efficient and economical technique for studying coastal bottoms in clear and shallow waters. Accordingly, the main objective of this study is the generation of benthic maps using high spatial resolution multispectral images from the WorldView-2/3 satellites. In this context, one of the main challenges consists of eliminating the disturbances caused in the signal by the atmosphere, the sea surface, and the water column. Regarding the water column correction, there is controversy about its effectiveness to improve the results achieved. To assess the impact of the water column correction in seagrass mapping, two coastal areas with different characteristics have been selected. Specifically, an analysis has been carried out consisting of the assessment of the Lyzenga and Sagawa water column correction models to identify the algorithm that provides the best mapping precision and, additionally, to seek if this pre-processing stage is helpful when classifying the seabed. The classification models selected for the study were: Gaussian Naïve Bayes (GNB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Subspace KNN (S-KNN). Machine learning techniques have proven to achieve better results and, in particular, SVM and KNN models provide the best overall accuracy. The results after benthic mapping have demonstrated, that image classification without water column corrections provides better accuracy (95.36% and 99.20%) than using Lyzenga (73.49% and 97.80%) or Sagawa (82.04% and 99.10%), for Case 2 and 1 waters, respectively. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | International Journal of Applied Earth Observation and Geoinformation | en_US |
dc.source | International Journal of Applied Earth Observation and Geoinformation[ISSN 1569-8432],v. 113, (Septiembre 2022) | en_US |
dc.subject | 2599 Otras especialidades de la tierra, espacio o entorno | en_US |
dc.subject.other | Depth Invariant Index | en_US |
dc.subject.other | High Resolution Benthic Maps | en_US |
dc.subject.other | Sagawa | en_US |
dc.subject.other | Seagrass | en_US |
dc.subject.other | Water Column Correction | en_US |
dc.subject.other | Worldview | en_US |
dc.title | Seagrass mapping using high resolution multispectral satellite imagery: A comparison of water column correction models | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jag.2022.102990 | en_US |
dc.identifier.scopus | 85138536642 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57220806560 | - |
dc.contributor.authorscopusid | 6602158797 | - |
dc.contributor.authorscopusid | 6603605357 | - |
dc.contributor.authorscopusid | 23091131800 | - |
dc.identifier.eissn | 1872-826X | - |
dc.relation.volume | 113 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Septiembre 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 1,628 | - |
dc.description.jcr | 7,5 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q1 | - |
dc.description.miaricds | 11,0 | - |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IOCAG: Procesado de Imágenes y Teledetección | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | GIR IOCAG: Procesado de Imágenes y Teledetección | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IOCAG: Procesado de Imágenes y Teledetección | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | https://orcid.org/0000-0003-1680-0726 | - |
crisitem.author.orcid | 0000-0002-9646-1017 | - |
crisitem.author.orcid | 0000-0002-0010-4024 | - |
crisitem.author.orcid | 0000-0001-7473-5454 | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Mederos Barrera, Antonio Ramón | - |
crisitem.author.fullName | Marcello Ruiz, Francisco Javier | - |
crisitem.author.fullName | Eugenio González, Francisco | - |
crisitem.author.fullName | Hernández Pérez, Eduardo | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
18
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 24, 2024
Page view(s)
91
checked on May 11, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.